Nav: Home

Impact of the Fukushima accident on marine life, five years later

October 18, 2016

PENSACOLA, Fla. - Five years ago, the largest single release of human-made radioactive discharge to the marine environment resulted from an accident at the Fukushima Daiichi Nuclear Power Plant in Japan. Approximately 80 percent of the fallout happened over the Pacific Ocean. Jordi Vives i Batlle of the Belgian Nuclear Research Centre explores the environmental consequences in the marine environment of the accident in an article published in the October issue of Integrated Environmental Assessment and Management. He outlines the status of current research about the impact of the fallout on plant and animal life and what remains to be done as the radioactivity continues to spread. His article is part of a series of invited commentaries from international experts on "Lessons Learned and Consequences of the Fukushima Daiichi Nuclear Power Plant Accident, 5 Years Later."

Overall, the radioactivity levels in the marine biota near Fukushima were lower than predicted by some early studies immediately following the accident, and exposures were too low for acute effects at the population level to be observed in marine organisms ranging from microalgae to mollusks to fish. One study cited in the article concluded that the quick radioactive decay of the iodine-131 (one of the main isotopes, initially) and the confinement of the fallout to only some species and areas close to the power station were contributing factors to the low threshold exposure. However, more recent studies have shown variable levels in individual fish, though they too confirm that population-level effects have not been observed.

The variability in fish has numerous confounding factors -- the fishes' position in the food chain, where they live in the water column and their migratory patterns, to name a few. Additionally, there is a hypothesis that sediments have delayed the dispersal of the radioactive substances. Benthic fish, those at the bottom of the ocean, are more exposed to contaminated sediments and receive higher dose rates than pelagic fish living in the higher levels of the water column.

Vives i Batlle concludes that additional research is still required to fully understand the long-term effects that the fallout has had and that there is a need to continue studying the few "hotspots" very near the power station. The long-term fate of the contamination is still unknown, and information about how much radiation is stored in sediments and how much is still leaking from delayed sources, such as groundwater, has yet to be quantified. The research available so far on the risk to the marine environment is encouraging, but key research questions remain unanswered, signaling the direction for future investigations.
-end-


Society of Environmental Toxicology and Chemistry

Related Fish Articles:

Ten million tonnes of fish wasted every year despite declining fish stocks
Industrial fishing fleets dump nearly 10 million tonnes of good fish back into the ocean every year, according to Sea Around Us research.
Distant fish relatives share looks
James Cook University scientists have found evidence that even distantly related Australian fish species have evolved to look and act like each other, which confirms a central tenet of evolutionary theory.
A fish of all flavors
Japanese researchers achieve atomic resolution images of taste receptors in fish.
Fish step up to lead when predators are near
Researchers from the University of Bristol have discovered that some fish within a shoal take on the responsibilities of leader when they are under threat from predators.
Fish evolve by playing it safe
New research supports the creation of more marine reserves in the world's oceans because, the authors say, fish can evolve to be more cautious and stay away from fishing nets.
Ancient southern China fish may have evolved prior to the 'Age of Fish'
An ancient fish species with unusual scales and teeth from the Kuanti Formation in southern China may have evolved prior to the 'Age of Fish', according to a study published March 8, 2017 in the open-access journal PLOS ONE by Brian Choo from Flinders University, Australia, and colleagues at the Institute of Vertebrate Paleontology and Paleoanthropology, China.
90 percent of fish used for fishmeal are prime fish
A new study emerging from the Sea Around Us project at the University of British Columbia's Institute for the Oceans and Fisheries reveals that from 1950 to 2010, 27 percent of commercial marine landings were diverted to uses other than direct human consumption.
The firefly among fish
The flashlight fish Anomalops katoptron, which inhabits the coral reefs of the Pacific, uses flashing signals to forage for food at night.
A social network for fish
Researchers have won a major new grant award for a study that will help to improve the welfare of live fish used in scientific tests.
Clever fish keep cool
Ocean warming is occurring at such a rapid rate that fish are searching for cooler waters to call home.

Related Fish Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".