Nav: Home

A protein makes the difference

October 18, 2016

When tumours develop they absorb oxygen and nutrients from the surrounding tissue. Once the tumour reaches a certain size, this is no longer enough to allow it to continue growing. It needs new blood vessels to deliver oxygen and nutrients. A common form of cancer therapy involves inhibiting angiogenesis, or the development of new blood vessels. However, this therapy does not work for all patients and the reasons were not known for a long time.

To solve this mystery, a team led by PD Dr. Elisabeth Naschberger and doctoral candidate Andrea Liebl from the Professorship for Molecular and Experimental Surgery at the Department of Surgery at Universitätsklinikum Erlangen investigated endothelial cells, the cells which form blood vessels. They suspected that endothelial cells in different tumours have different characteristics and thus react differently to therapy.

The researchers began by isolating endothelial cells from intestinal tumours from patients with both good and poor prognoses and then compared the cells in cultures. They found that the endothelial cells from tumours of patients with a good prognosis produced the protein SPARCL1 - and that SPARCL1 inhibits the growth of both endothelial cells and tumour cells.

Further analysis of tissue samples revealed that SPARCL1 stabilises mature blood vessels in healthy intestinal tissue, thus inhibiting the formation of new blood vessels. SPARCL1 was found in tumours with good prognoses. In contrast the protein was deactivated in tumours with poor prognoses; in these cases new blood vessels were formed and the tumours continued to grow. The researchers refuted the dominant opinion with their results: 'Previously the assumption was that blood vessels always benefit tumour growth. However, we have shown that blood vessels, if they contain the protein SPARCL1, can also stem tumour growth,' explains Prof. Dr. Dr. Michael Stürzl, Professor of Molecular and Experimental Surgery.

'The study also shows why tumours in many cases continue to grow despite therapy intended to inhibit blood vessels,' adds Stürzl. 'In tumours whose blood vessels produce SPARCL1 and which are already adequately supplied with oxygen and nutrients, suppression of the blood vessels could foster tumour growth. It's important to note that the study does not recommend that antiangiogenic therapy not be used, but rather explains why such therapies may not be effective in all patients.' The researchers' next step is to work on developing the results for eventual use in cancer treatments.
-end-
The project received funding from the Interdisciplinary Centre for Clinical Research at Universitätsklinikum Erlangen, Deutsche Krebshilfe, the German Research Foundation and the Emerging Fields Initiative at FAU.

University of Erlangen-Nuremberg

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".