Can we find more benign nanomaterials?

October 18, 2016

Chemists at the University of Iowa will research the effects of nanomaterials on the environment and human health using a network of supercomputers funded by the U.S. National Science Foundation.

Sara E. Mason, assistant professor in the Department of Chemistry, won an NSF award that grants her team access to the Extreme Science and Engineering Discovery Environment (XSEDE). The XSEDE project links computers, data, and people from around the world to establish a single, virtual system that scientists can interactively use to conduct research. It was started in 2011 and was renewed by the NSF last August.

The NSF says it "will be the most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world."

The UI grant, valued at $72,503, essentially gives Mason's team time on the supercomputer network, which they can access from their desktops. The researchers will use that time to study nanoparticles--matter far too small to be seen by the naked eye and present in a range of products, from sunscreen to advanced batteries for hybrid and electric vehicles.

The team hopes to better define the atom-to-atom interactions of various nanoparticles. Mason says the grant will "super charge" her computational research.

"To me, having four concurrent NSF research grants is a big deal, and now, having the boost of the computer time allows us to do even more," Mason says. "XSEDE allows us to run simulations using quantum mechanics and highly parallelized computers. The outcome is new chemical insight into natural or widely used nanoparticles. We can then connect the chemistry to broader issues, such as human health and the behavior of nanomaterials in the environment."

Mason's group aims to find and design nanomaterials that are more benign to the environment and human health. Part of the search means trying out new elements in computational designs to find out how they interact, as well as their side effects, good or bad.

The XSEDE computers will give them far more computing horsepower to carry out those computational experiments.

"We can collectively get a lot more done in a shorter period of time," says Joseph Bennett, co-principal investigator on the grant and a post-doctoral researcher in Mason's group.

The UI is one of 15 institutions affiliated with the NSF-funded Center for Sustainable Nanotechnology, devoted to investigating the fundamental molecular mechanisms by which nanoparticles interact with biological systems.
-end-


University of Iowa

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.