UM researchers study vast carbon residue of ocean life

October 18, 2016

MIAMI--The oceans hold a vast reservoir--700 billion tons--of carbon, dissolved in seawater as organic matter, often surviving for thousands of years after being produced by ocean life. Yet, little is known about how it is produced, or how it's being impacted by the many changes happening in the ocean.

Think of dissolved organic carbon, or DOC, in the ocean as tree leaves and other dead organic matter falling to the forest ground--a portion of this natural carbon sustains life while the remainder remains hidden in the soils, being sequestered for many years. As is true in the forests, this vital, residual carbon reservoir is necessary to sustain life in the ocean, and to sequester vast amounts of carbon in its great depths.

To better understand this important pool of ocean carbon, researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science used data collected over the past 15 years on several international scientific cruises to map the distribution of this material in the Atlantic Ocean. From the analysis, they found that this major basin contributes one third of the global ocean net production of dissolved organic carbon.

"Carbon is involved in all aspects of our life," said Dennis Hansell, UM Rosenstiel School professor of ocean sciences and coauthor of the study. "We need to understand the carbon cycle on Earth especially as we add more from the burning of fossil fuels."

Dissolved organic carbon is the primary food source at the base of the marine food chain. It is produced by phytoplankton during photosynthesis, and it is mostly consumed by microbial life. The remainder that is not consumed by microbes accumulates in the ocean.

The researchers discovered that the production of dissolved organic carbon at the ocean's surface could be accurately predicted by measuring the amount of nutrients arriving into the euphotic, or sunlit, zone. The nutrients arrive there mostly by winter mixing and upwelling, and in turn support the growth of ocean plant life. From the arrival of nutrients to the surface ocean, they estimated the resulting plant growth and the production of residue, the DOC, from that growth. From those estimates, they built a map of DOC at the surface of the entire Atlantic Ocean.

"In our work, we found that the production of dissolved organic carbon depends on the quantity of nutrients that reach the euphotic zone from deeper layers," said Cristina Romera-Castillo, a former postdoctoral researcher at the UM Rosenstiel School and lead author of the study. "In future scenarios, how climate change will affect the nutrient arrival to the surface ocean will determine the inventory of dissolved organic carbon in the ocean."

This inventory in turn affects the cycling of carbon on Earth, which has important roles in climate.
-end-
The paper, titled "New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean," was published in the Proceedings of the National Academy of Sciences. The study's authors include: Cristina Romera-Castillo, who conducted the work while a postdoctoral researcher at the UM Rosenstiel School, UM Rosenstiel School Professor of Ocean Sciences Dennis Hansell, and Robert T. Letscher from the University of California Irvine.

The study was funded by grants from the National Science Foundation, Grant# OCE1436748 and the U.S. Department of Energy's Scientific Discovery through Advanced Computing program, Grant# DE-SC0012550

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

University of Miami Rosenstiel School of Marine & Atmospheric Science

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.