New 3-D wiring technique brings scalable quantum computers closer to reality

October 18, 2016

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD candidate with IQC and the Department of Physics and Astronomy at Waterloo. He and Thomas McConkey, PhD candidate from IQC and the Department of Electrical and Computer Engineering at Waterloo, are lead authors on the study that appears in the journal Physical Review Applied as an Editors' Suggestion and is featured in Physics. "The technique connects classical electronics with quantum circuits, and is extendable far beyond current limits, from one to possibly a few thousand qubits."

One promising implementation of a scalable quantum computing architecture uses a superconducting qubit, which is similar to the electronic circuits currently found in a classical computer, and is characterized by two states, 0 and 1. Quantum mechanics makes it possible to prepare the qubit in superposition states, meaning that the qubit can be in states 0 and 1 at the same time. To initialize the qubit in the 0 state, superconducting qubits are brought down to temperatures close to -273 degrees Celsius inside a cryostat, or dilution refrigerator.

To control and measure superconducting qubits, the researchers use microwave pulses. The pulses are typically sent from dedicated sources and pulse generators through a network of cables connecting the qubits in the cryostat's cold environment to the room-temperature electronics. The network of cables required to access the qubits inside the cryostat is a complex infrastructure and, until recently, has presented a barrier to scaling the quantum computing architecture.

"All wire components in the quantum socket are specifically designed to operate at very low temperatures and perform well in the microwave range required to manipulate the qubits," said Matteo Mariantoni, a faculty member at IQC and the Department of Physics and Astronomy at Waterloo and senior author on the paper. "We have been able to use it to control superconducting devices, which is one of the many critical steps necessary for the development of extensible quantum computing technologies."
The paper, Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket, is a collaborative effort of researchers at INGUN Prüfmittelbau GmbH, Germany, INGUN USA, and Google in the United States, plus the following researchers from IQC and Waterloo: Jeremy Béjanin, Thomas McConkey, John Rinehart, Carolyn Earnest, Corey Rae McRae, Daryoush Shiri, James Bateman, Yousef Rohanizadegan and Matteo Mariantoni.

University of Waterloo

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to