Why does diabetes cause heart failure?

October 18, 2018

MAYWOOD, IL - Men with diabetes are 2.4 times more likely than non-diabetics to suffer heart failure and women are five times more likely.

A new Loyola University Chicago Stritch School of Medicine study reveals how, on a cellular level, diabetes can cause heart failure. The findings could lead to medications to treat and perhaps prevent heart failure in diabetes patients, researchers said.

The study from the lab of Jonathan A. Kirk, PhD, is published in the American Society for Clinical Investigation journal JCI Insight. Dr. Kirk is an assistant professor in the Department of Cell and Molecular Physiology of Loyola University Chicago Stritch School of Medicine.

In a healthy heart, microscopic lattice-like structures called myofilaments cause heart muscle cells to contract. The cells work in concert to make the heart contract and relax with each beat. In patients suffering from heart failure, heart muscle cells become weaker, and consequently, the heart does not pump enough blood to meet the body's needs. The patient experiences symptoms such as shortness of breath, fatigue and swelling in the legs. Heart failure ultimately can be fatal.

In the Loyola study, researchers focused on a molecule called methylglyoxal. When the body transforms food into chemical energy, waste products are generated, including methylglyoxal. Normally, the body does an efficient job clearing out methylglyoxal. But the cleansing process does not work as well in diabetics, allowing methylglyoxal to accumulate. Methylglyoxal attaches to key building blocks of proteins, which can affect how the proteins function.

Researchers examined heart tissue from three groups: people without heart failure, people with heart failure who also had diabetes and people with heart failure who did not have diabetes. The study found that methylglyoxal modifies the cardiac myofilament more in diabetic heart failure patients than it does in people who either don't have heart failure or have heart failure without diabetes. Researchers further found that the modifications caused by methylglyoxal weakened heart muscle cells by interfering with how the molecular motor works.

"This little molecule, methylglyoxal, builds up in heart cells during diabetes and gums up the myofilaments so they cannot contract as well," said lead author Maria Papadaki, PhD, a post-doctoral fellow at Loyola University Chicago Stritch School of Medicine.

The findings suggest a new approach to treating patients with diabetes who are at risk of developing heart failure. This approach involves developing drugs that would counter the effects of methylglyoxal by fine-tuning the myofilament motors.

Dr. Kirk speculates that the effects of methylglyoxal, as identified in the study, may be a key early step in how diabetes induces heart failure. This discovery could provide an effective therapeutic target for preventing heart failure in the growing population of diabetics.
-end-
The study is titled, "Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function." (Sarcomere is the technical term for the molecular motor unit in heart muscle.) The study was funded by grants from the National Institutes of Health and American Heart Association.

In addition to Drs. Kirk and Papadaki, other co-authors are Thomas G. Martin and Marisa J. Stachowski of Loyola University Chicago's Department of Cell and Molecular Physiology; Ronald J. Holewinski, PhD, and Jennifer E. Van Eyk, PhD, of Cedars-Sinai Medical Center; Samantha Beck Previs, Amy Li, PhD, and David M. Warshaw, PhD, of the University of Vermont; Cheavar A. Blair, PhD, and Ken Campbell, PhD, of the University of Kentucky; and Christine S. Moravec, PhD, of the Cleveland Clinic.

Loyola University Health System

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.