Nav: Home

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018

LA JOLLA--(October 18, 2018) When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. As we age, this quality, called "plasticity," lessens.

In a study published October 18, 2018 in Neuron, a team from the Salk Institute has shown that astrocytes--long-overlooked supportive cells in the brain--help to enable the brain's plasticity, a new role for astrocytes that was not previously known. The findings could point to ways to restore connections that have been lost due to aging or trauma.

"We knew from our previous work that astrocytes are important for the development of the brain; however, we knew very little about the role of astrocytes in the adult brain," says Nicola Allen, assistant professor and the study's senior author. "To investigate this role, we used a lot of techniques in the lab to identify a signal made by astrocytes that's very important for brain maturation."

The signal turned out to be a protein astrocytes secrete called Chrdl1, which increases the number and maturity of connections between nerve cells, enabling the stabilization of neural connections and circuits once they finish developing.

To further understand the role of Chrdl1, the team developed mouse models with the gene disabled by introduced mutations. These mice had a level of plasticity in their brains that was much higher than normal. Adult mice with the Chrdl1 mutation had brain plasticity that looked very much like that of young mice, whose brains are still in early stages of development.

"It's important to study brain plasticity, because it teaches us how the brain remodels itself in response to new experiences," says first author Elena Blanco-Suarez, a research associate in Allen's lab. "Although some degree of plasticity is important, it decreases as we become older. Nature has designed these circuits to become more stable and less flexible. Otherwise, our brains would not mature and we would experience our whole life like a young child does."

Not much is known about the role of Chrdl1 in humans, but one study of a family with a Chrdl1 mutation showed they performed extremely well in memory tests. Other studies have shown the level of the gene encoding Chrdl1 is altered in schizophrenia and bipolar disorder, suggesting that Chrdl1 may have important roles in both health and disease.

Future research by the team will dive deeper into the relationships between astrocytes and neurons and look for potential ways to use astrocytes as therapy.

"We're interested in learning more about what the astrocytes are secreting into the brain environment and how those signals affect the brain," says Allen. "We plan to look at this relationship both early in development and in situations where those connections are lost and you want to stimulate repair, like after someone has had a stroke."
-end-
Other researchers on the paper were Tong-Fei Liu and Alex Kopelevich of Salk.

This work was funded by National Institutes of Health grant NS105742, the Hearst Foundation, the Pew Charitable Trusts, the Lawrence Ellison Foundation, the Whitehall Foundation, the Helmsley Foundation and the Catarina Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Aging Articles:

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.
Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.
The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.
Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
We all want 'healthy aging,' but what is it, really? New report looks for answers
Led by Paul Mulhausen, MD, MHS, FACP, AGSF, colleagues from the American Geriatrics Society (AGS) set looking critically at what 'healthy aging' really means.
New insight into aging
Researchers at the Montreal Neurological Institute and Hospital (The Neuro) of McGill University examined the effects of aging on neuroplasticity in the primary auditory cortex, the part of the brain that processes auditory information.
More Aging News and Aging Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.