Nav: Home

3D-printed supercapacitor electrode breaks records in lab tests

October 18, 2018

Scientists at UC Santa Cruz and Lawrence Livermore National Laboratory (LLNL) have reported unprecedented performance results for a supercapacitor electrode. The researchers fabricated electrodes using a printable graphene aerogel to build a porous three-dimensional scaffold loaded with pseudocapacitive material.

In laboratory tests, the novel electrodes achieved the highest areal capacitance (electric charge stored per unit of electrode surface area) ever reported for a supercapacitor, said Yat Li, professor of chemistry and biochemistry at UC Santa Cruz. Li and his collaborators reported their findings in a paper published October 18 in Joule.

As energy storage devices, supercapacitors have the advantages of charging very rapidly (in seconds to minutes) and retaining their storage capacity through tens of thousands of charge cycles. They are used for regenerative braking systems in electric vehicles and other applications. Compared to batteries, they hold less energy in the same amount of space, and they don't hold a charge for as long. But advances in supercapacitor technology could make them competitive with batteries in a much wider range of applications.

In earlier work, the UCSC and LLNL researchers demonstrated ultrafast supercapacitor electrodes fabricated using a 3D-printed graphene aerogel. In the new study, they used an improved graphene aerogel to build a porous scaffold which was then loaded with manganese oxide, a commonly used pseudocapacitive material.

A pseudocapacitor is a type of supercapacitor that stores energy through a reaction at the electrode surface, giving it more battery-like performance than supercapacitors that store energy primarily through an electrostatic mechanism (called electric double-layer capacitance, or EDLC).

"The problem for pseudocapacitors is that when you increase the thickness of the electrode, the capacitance decreases rapidly because of sluggish ion diffusion in bulk structure. So the challenge is to increase the mass loading of pseudocapacitor material without sacrificing its energy storage capacity per unit mass or volume," Li explained.

The new study demonstrates a breakthrough in balancing mass loading and capacitance in a pseudocapacitor. The researchers were able to increase mass loading to record levels of more than 100 milligrams of manganese oxide per square centimeter without compromising performance, compared to typical levels of around 10 milligrams per square centimeter for commercial devices.

Most importantly, the areal capacitance increased linearly with mass loading of manganese oxide and electrode thickness, while the capacitance per gram (gravimetric capacitance) remained almost unchanged. This indicates that the electrode's performance is not limited by ion diffusion even at such a high mass loading.

First author Bin Yao, a graduate student in Li's lab at UC Santa Cruz, explained that in traditional commercial fabrication of supercapacitors, a thin coating of electrode material is applied to a thin metal sheet that serves as a current collector. Because increasing the thickness of the coating causes performance to decline, multiple sheets are stacked to build capacitance, adding weight and material cost because of the metallic current collector in each layer.

"With our approach, we don't need stacking because we can increase capacitance by making the electrode thicker without sacrificing performance," Yao said.

The researchers were able to increase the thickness of their electrodes to 4 millimeters without any loss of performance. They designed the electrodes with a periodic pore structure that enables both uniform deposition of the material and efficient ion diffusion for charging and discharging. The printed structure is a lattice composed of cylindrical rods of the graphene aerogel. The rods themselves are porous, in addition to the pores in the lattice structure. Manganese oxide is then electrodeposited onto the graphene aerogel lattice.

"The key innovation in this study is the use of 3D printing to fabricate a rationally designed structure providing a carbon scaffold to support the pseudocapacitive material," Li said. "These findings validate a new approach to fabricating energy storage devices using 3D printing."

Supercapacitor devices made with the graphene aerogel/manganese oxide electrodes showed good cycling stability, retaining more than 90 percent of initial capacitance after 20,000 cycles of charging and discharging. The 3D-printed graphene aerogel electrodes allow tremendous design flexibility because they can be made in any shape needed to fit into a device. The printable graphene-based inks developed at LLNL provide ultrahigh surface area, lightweight properties, elasticity, and superior electrical conductivity.
-end-
In addition to Yao and Li, the authors of the paper include co-first author Swetha Chandrasekaran at Lawrence Livermore National Laboratory; Jing Zhang and Wang Xiao at UC Santa Cruz; and Fang Qian, Cheng Zhu, Eric Duoss, Christopher Spadaccini, and Marcus Worsley at LLNL. Worsley and Li are both corresponding authors of the paper. This work was funded by the U.S. Department of Energy.

University of California - Santa Cruz

Related Electrodes Articles:

Ionic channels in carbon electrodes for efficient electrochemical energy storage
Development towards high-performance electrochemical energy storage devices has evoked our effort on novel carbon electrodes, as certain nanocarbons are perceived to own advantages such as high specific surface areas and controllable structure.
Brain-computer interfaces without the mess
It sounds like science fiction: controlling electronic devices with brain waves.
Nanoparticles in lithium-sulphur batteries detected with neutron experiment
An HZB team has for the first time precisely analysed how nanoparticles of lithium sulphide and sulphur precipitate onto battery electrodes during the course of the charging cycle.
Leap toward robust binder-less metal phosphide electrodes for Li-ion batteries
Researchers at the Toyohashi University of Technology have successfully fabricated a binder-less tin phosphide (Sn4P3)/carbon (C) composite film electrode for lithium-ion batteries via aerosol deposition.
Review on the synthesis and anti-oxidation of copper nanowires for transparent conductive electrodes
In a paper to be published in the forthcoming issue in NANO, a team of researchers have reviewed the methods of synthesizing copper nanowires (Cu NWs) and techniques to improve its oxidation resistance.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
Expanding the use of silicon in batteries, by preventing electrodes from expanding
Silicon anodes are generally viewed as the next development in lithium-ion battery technology.
Large-scale window material developed for PM2.5 capture and light tuning
A research team from University of Science and Technology of China develops a simple and economical process to fabricate large-scale flexible smart windows.
Application of nanosized LiFePO4 modified electrode to electrochemical sensor & biosensor
The aim of this paper was to construct nanosized LFP modified electrodes, which could be applied as working electrode for rutin analysis and as an electrochemical biosensor for direct electrochemistry of Hemoglobin (Hb).
Research could lead to more durable cell phones and power lines
Researchers from Binghamton University, State University of New York have developed a way to make cell phones and power lines more durable. 
More Electrodes News and Electrodes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.