Research gives new insight into the evolution of the nervous system

October 18, 2018

Pioneering research has given a fascinating fresh insight into how animal nervous systems evolved from simple structures to become the complex network transmitting signals between different parts of the body.

The new study used simple multicellular organisms called Placozoa to reveal the beginnings of the nervous systems found in more complex animals.

The international research team, including Professor Gáspár Jékely from the University of Exeter's Living Systems Institute, found that Placozoa can coordinate their movement and body shape, in the absence of a nervous system, by signalling with small peptides between cells.

The study is published in Current Biology on October 18 2018.

Professor Jékely believes that a peptidergic signalling system allows a very high complexity of behavioural organisation.

He said: "Each peptide can be used individually as a different signal, but the peptides could also be used sequentially or together in different combinations which allows for very high numbers of unique signals between cells. This explains how Placozoans can coordinate sophisticated behavioural sequences such as feeding."

Placozoans, the simplest of all animals, resemble a small, hairy disc about 1mm in size, with just three cell layers. Although they have no true nerve or muscle cells, they glide across surfaces in the ocean with apparent ease.

The new study explored how this multicellular animal with no nervous system can coordinate all the cells in its body to perform complex behaviour.

They found that Placozoan cells contain a variety of small peptides, made up of 4-20 amino acids that are secreted from one cell and detected by neighbouring cells as a means of communication.

Crucially, this echoes how more complex organisms use similar peptides, known as neuropeptides, for signalling within the nervous system.

Associate Professor Dirk Fasshauer, from the University of Lausanne, Switzerland and co-author of the study said: "These new findings show that outer appearances can be deceiving, because cells that look the same are actually signalling with different molecules and are very likely to have different functions."

Using synthetically constructed versions of the Placozoan signalling peptides, the researchers could tap into this hidden signalling system to understand the role of each peptide in coordinating movement and body shape.

The experiments revealed that the peptides changed Placozoan behaviour within seconds. Each peptide had a unique effect, which in some cases was very dramatic. The main behavioural changes caused by the peptides included crinkling, turning, flattening, and internal churning, a behaviour associated with feeding.

Dr. Frédérique Varoqueaux, also from the University of Lausanne, added: "It might seem strange to use an animal with no neurons or synapses to study nervous system evolution, but although Placozoans are nerveless, you can still find within their cells the basic molecules needed for communication in complex nervous systems.

"So studying Placozoans can tell us more about the origins of neurons and how they became the body's control system."
"High cell diversity and complex peptidergic signalling underlie placozoan behaviour" is published in Current biology on Thursday, October 18, 2018.

University of Exeter

Related Nervous System Articles from Brightsurf:

Chikungunya may affect central nervous system as well as joints and lungs
Investigation conducted by international group of researchers showed that chikungunya virus can cause neurological infections.

Glial cells play an active role in the nervous system
Researchers at M√ľnster University, Germany, have discovered that glial cells - one of the main components of the brain -not only control the speed of nerve conduction, but also influence the precision of signal transduction in the brain.

Protein produced by the nervous system may help treatments for inflammatory diseases
A Rutgers-led team discover a protein produced by nervous system may be key to treating inflammatory diseases like asthma, allergies, chronic fibrosis and chronic obstructive pulmonary disease (COPD)

COVID-19 may attack patients' central nervous system
''There may be more central nervous system penetration of the virus than we think based on the prevalence of olfaction-associated depressed mood and anxiety and this really opens up doors for future investigations to look at how the virus may interact with the central nervous system,'' explains Ahmad Sedaghat, MD, PhD.

Lifting weights makes your nervous system stronger, too
Gym-goers may get frustrated when they don't see results from weightlifting right away, but their efforts are not in vain: the first few weeks of training strengthen the nervous system, not muscles.

COVID-19 threatens the entire nervous system
A new review of neurological symptoms of COVID-19 patients in current scientific literature reveals the disease poses a global threat to the entire nervous system.

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.

Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.

Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.

Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.

Read More: Nervous System News and Nervous System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to