UMass Amherst researchers unfold secret stability of bendy straws

October 18, 2018

AMHERST, Mass. - Collapsible dog bowls, bendable medical tubes and drinking straws all seem to work on a common principle, snapping into a variety of mechanically stable and useful states. Despite the many applications for such "designer matter" structures, however, the fundamental mechanisms of how they work have until now remained mysterious, say materials scientists at the University of Massachusetts Amherst led by Ryan Hayward.

Now he and colleagues including first author and Hayward's former doctoral student Nakul Bende and their UMass Amherst colleague theoretical physicist Christian Santangelo, with mechanician James Hanna and students at Virginia Tech, report that they have figured out how these "multi-stable" structures composed of stacked conical sections are loaded with pre-stress, pent-up tension that arises "because the material is forced into a closed ring that is more tightly curved than it naturally wants to be," as Hayward explains.

"What we discovered is that the very useful property of being mechanically stable in a bent configuration seems to require pre-stress. As far as we are aware, no one had ever looked at how and why such structures have stability in the bent state," he adds.

He points out, "It will be helpful for us to understand this fundamental principle, which is key when designing new applications. If you're going to build a reconfigurable device, it's important to know why it works, and when it might fail." Details appear in the current online issue of Soft Matter.

Hayward says that the mechanics that explain the ability of corrugated tubes to be extended and contracted in length are "pretty well established," as is the idea that moving materials between mechanically stable states requires overcoming an energy barrier. Playing with a variety of colorful bendable tubes on his desk, he demonstrates that the tube holds its shape in either state, and that an energy barrier is crossed when it pops in and out of each.

"The mystery is why this tube of stacked cones should be stable in the bent state," he notes. "There's no obvious reason why a bendy straw should want to be stable when bent."

To experiment with this, he and colleagues cut a tube lengthwise to see what would happen. By cutting the tube, he says, "we figured out that the tube would open out and flatten, which was a serendipitous moment. It was something we had to go back and try to understand. That was the key to discovering the role of pre-stress. We found that when you relax the curvature, the lack of stored energy eliminates stability in the bent state. We also built some tubes that we forced closed at smaller radius, to introduce pre-stress, and found that this restored the ability to hold a bent shape."

They analyzed this "pre-stress" effect through curvature analysis during deformation using X-ray computed tomography and with a simple mechanical model that captured the qualitative behavior of the highly reconfigurable systems.

The authors point out that "Many biological mechanisms have been uncovered that exploit snap-through transitions between mechanically stable states of slender elastic structures to achieve rapid motion. While much of the literature has focused on bistability, systems that support multiple stable states are attractive for the design of highly reconfigurable structures," such as the ones they report on.
-end-


University of Massachusetts at Amherst

Related Stability Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Extra stability for magnetic knots
Tiny magnetic whirls that can occur in materials - so-called skyrmions - hold high promises for novel electronic devices or magnetic memory in which they are used as bits to store information.

Scientists boost stability and efficiency of next-gen solar tech
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have created next-generation solar modules with high efficiency and good stability.

Highest peak power and excellent stability
Optical amplifiers based on chirped pulse amplification (CPA) are used to generate high intensity pulses.

More ecosystem engineers create stability, preventing extinctions
Biological builders like beavers, elephants, and shipworms re-engineer their environments.

Environmental conditions found to affect stability of virus that causes COVID-19
A new study led by Marshall University researcher M. Jeremiah Matson found that environmental conditions affect the stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human nasal mucus and sputum.

The mystery of visual stability
We move our eyes several times per second. These fast eye movements, called saccades, create large image shifts on the retina -- making our visual system work hard to maintain a stable perceptual world.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

New role assigned to a human protein in transcription and genome stability
DNA-RNA hybrids, or R loops, are structures that generate genomic instability, a common feature of tumor cells.

NIST researchers boost microwave signal stability a hundredfold
Researchers at the National Institute of Standards and Technology (NIST) have used state-of-the-art atomic clocks, advanced light detectors, and a measurement tool called a frequency comb to boost the stability of microwave signals 100-fold.

Read More: Stability News and Stability Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.