Nav: Home

Pushing the (extra cold) frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties.

How cold? Lower than 0.05 Kelvin (-272°C).

"For many modern (quantum) materials, to properly study the fine details of their quantum mechanical behavior you need to be cool. Cooler than was formerly thought possible," said Ruslan Prozorov, a physicist at the U.S. Department of Energy's Ames Laboratory, who specializes in developing instrumentation which measures just such things.

Prozorov and his research team have developed a method to measure magnetic properties of superconducting and magnetic materials that exhibit unusual quantum behavior at very low temperatures in high magnetic fields. The method is being used to study quantum critical behavior, mechanisms of superconductivity, magnetic frustration and phase transitions in materials, many of which were first fabricated at Ames Laboratory.

They did so by placing a tunnel diode resonator, an instrument that makes precise radio-frequency measurements of magnetic properties, in a dilution refrigerator, a cryogenic device that is able to cool samples down to milli-Kelvin temperature range. While this was already achieved before, previous works did not have the ability to apply large static magnetic fields, which is crucial for studying quantum materials.

Prozorov's group worked to overcome the technical difficulties of maintaining high-resolution magnetic measurements, while at the same time achieving ultra-cold temperatures down to 0.05 K and in magnetic fields up to 14 tesla. A similar circuit has already been used in a very high magnetic field (60 T) when the team performed the experiments at Los Alamos National Lab.

"When we first installed the dilution refrigerator, the joke was that my lab had the coldest temperatures in Iowa," said Prozorov, who conducts his research where Midwestern winters are no laughing matter. "But we were not doing this just for fun, to see how cold we could go. Many unusual quantum properties of materials can only be uncovered at these extremely low temperatures."

The group studied pairing symmetry in several unconventional superconductors, mapped a very complex phase diagram in a system with field-induced quantum critical behavior, and recently uncovered very unusual properties of a spin-ice system, "none of which would be possible without this setup," said Prozorov.
-end-
The research is further discussed in the paper, "Tunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields," authored by H. Kim, M.A. Tanatar and R. Prozorov; and published as an Editor's Pick in the Review of Scientific Instruments.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Ames Laboratory

Related Magnetic Fields Articles:

New metrology technique measures electric fields
It is crucial that mobile phones and other wireless devices -- so prevalent today -- have accurate and traceable measurements for electric fields and radiated power.
First direct exploration of magnetic fields in the upper solar atmosphere
Scientists have explored the magnetic field in upper solar atmosphere by observing the polarization of ultraviolet light with the CLASP sounding rocket experiment during its 5-minute flight in space on Sept.
New method can model chemistry in extreme magnetic fields of white dwarfs
Approximately 10-20 percent of white dwarfs exhibit strong magnetic fields, which can reach up to 100,000 tesla.
Researchers control soft robots using magnetic fields
Engineering researchers have made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices.
Steering towards grazing fields
It makes sense that a 1,200 pound Angus cow would place quite a lot of pressure on the ground on which it walks.
Researchers propose technique for measuring weak or nonexistent magnetic fields
Researchers at the University of Iowa have proposed a new approach to sampling materials with weak or no magnetic fields.
Magnetic fields at the crossroads
Almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.
Researchers coax particles to form vortices using magnetic fields
Researchers at Argonne created tiny swirling vortices out of magnetic particles, providing insight into the behavior that governs such systems -- which opens up new opportunities for materials and devices with new properties.
Earth's magnetic fields could track ocean heat, NASA study proposes
As Earth warms, much of the extra heat is stored in the planet's ocean.
Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities
PPPL physicists have conducted simulations that suggest that applying magnetic fields to fusion plasmas can control instabilities known as Alfvén waves that can reduce the efficiency of fusion reactions.

Related Magnetic Fields Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".