Mutant cells colonize our tissues over our lifetime

October 18, 2018

By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists at the Wellcome Sanger Institute, MRC Cancer Unit, University of Cambridge and their collaborators uncovered a hidden world of mutations and evolution in our tissues as we age.

The results, published today (18 October) in Science show how mutant cells mutate and compete with each other throughout life, and only the fittest mutations survive.

Every person accumulates genetic changes, or mutations, throughout their lifetime. These mutations in normal tissue, called somatic mutations, are key to understanding the first steps to cancer and likely contribute towards ageing, but are unchartered territory due to technical limitations.

For the first time, scientists have uncovered that on average, healthy cells in the oesophagus carry at least several hundred mutations per cell in people in their twenties, rising to over 2,000 mutations per cell later in life. Only mutations in a dozen or so genes seem to matter however, as these give the cells a competitive advantage allowing them to take over the tissue and form a dense patchwork of mutations.

Professor Phil Jones, joint lead author from the Wellcome Sanger Institute and MRC Cancer Unit, University of Cambridge, said: "Under the microscope, the oesophageal tissue looked completely normal - it came from healthy individuals who had no signs of cancer. After studying the genetics we were shocked to see that the healthy oesophagus was riddled with mutations. We discovered that by the time an individual reaches middle age, they probably have more mutant than normal cells."

The team used targeted and whole-genome sequencing to map groups of mutant cells in normal oesophageal tissue from nine individuals aged 20 to 75 years*. The individuals' oesophageal tissues were considered healthy as none of the donors had a known history of oesophageal cancer, nor were taking medication for problems relating to the oesophagus.

The study also casts new light on the mutations that are found in the squamous kind of oesophageal cancers. One mutated gene, TP53, which is found in almost all oesophageal cancers is already mutated in 5-10 per cent of normal cells, suggesting that cancer develops from this minority of cells.

In contrast, mutations in the NOTCH1 gene, known to control cell division, were found in nearly half of all cells of normal oesophagus by middle age, being several times more common in normal tissue than cancer. This observation suggests that researchers need to reconsider the role of some genes recurrently mutated in cancer in the light of mutations in normal tissue, and raises the possibility that the NOTCH1 mutation may even protect cells against cancer development.

Dr Jo Fowler, joint first author from the Wellcome Sanger Institute, said: "For years we have sequenced cancer genomes and looked for genes that are commonly mutated across patients. We assumed that the common mutations are the ones driving the cancer. However, now we have looked at normal tissues we were surprised to find that a gene commonly associated with oesophageal cancer, NOTCH1, was more mutated in normal cells than cancer cells. These results suggest that scientists may need to rethink the role of some cancer genes in the light of sequencing normal tissues."

The discovery that normal aged oesophagus is a dense patchwork of mutant cells carrying mutations previously linked with oesophageal cancer has important implications. It provides insights into key genes that control cell behaviour in normal tissues. It also gives a window into the first steps in the development of some oesophageal cancers, which are believed to arise from these mutant cells, and will be informative for current research efforts on early detection of cancer.

Dr Inigo Martincorena, joint lead author from the Wellcome Sanger Institute, said: "We have found that genetic mutations associated with cancer are widespread in normal tissues, revealing how our own cells mutate, compete and evolve to colonise our tissues as we age. Given the importance of these mutations to cancer, it is remarkable that we have been unaware of the extent of this phenomenon until now. While the work sheds light on early cancer development, it also raises many questions about how these mutations may contribute to ageing and other diseases, opening interesting avenues for future research."

Professor Karen Vousden, chief scientist at Cancer Research UK, which part-funded the study, said: "As cancer researchers, we can't underestimate the importance of studying healthy tissue. Our risk of developing cancer increases as we age, and this research brings us closer to uncovering clues within our normal tissues to help us identify individuals at higher risk of the disease.

"This study shows that some genetic changes linked to cancer are present in surprisingly large numbers of normal cells. We still have a long way to go to fully understand the implications of these new findings, but we hope that studies like this will one day help us to develop targeted diagnostic tests. In particular, oesophageal cancer is very hard to treat so detecting signs of the disease at the earliest possible stage could make a huge difference for patients."
-end-
Notes to Editors:

*The researchers are very grateful to the families of deceased donors for their consent, and thank the Cambridge Biorepository for Translational Medicine for access to human tissue. The researchers would also like to acknowledge the work of Dr Kourosh Saeb-Parsy who swiftly transported the donors' organs, enabling access to healthy tissue for this research.

Publication:

Inigo Martincorena, Jo Fowler et al. (2018) Somatic mutant clones colonize the human esophagus with age. Science. DOI: 10.1126/science.aau3879

Funding:

This research was supported by Cancer Research UK (C609/A17257), the Medical Research Council and Wellcome.

Selected websites:

About Cancer Research UK

For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1022 or visit http://www.cancerresearchuk.org. Follow us on Twitter and Facebook.

About the Medical Research Council Cancer Unit:

The Medical Research Council (MRC) Cancer Unit undertakes world-leading research into the earliest steps in cancer development that can be translated into clinical practice to improve the diagnosis and treatment of cancers. Its research programmes encompass a range of areas including the BRCA2-related forms of inherited cancers and the role of genomic instability in cancer progression, linkages between cancer and metabolism, cancer stem cells, the role of the tumour microenvironment in cancer development and cancer of the oesophagus. The Unit is based on the Cambridge Biomedical Campus, and is part of the University of Cambridge. http://www.mrc-cu.cam.ac.uk

About the Medical Research Council:

The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-two MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk

About the University of Cambridge

The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 98 affiliates of the University have won the Nobel Prize. Founded in 1209, the University comprises 31 autonomous Colleges, which admit undergraduates and provide small-group tuition, and 150 departments, faculties and institutions. Cambridge is a global university. Its 19,000 student body includes 3,700 international students from 120 countries. Cambridge researchers collaborate with colleagues worldwide, and the University has established larger-scale partnerships in Asia, Africa and America. The University sits at the heart of the 'Cambridge cluster', which employs 60,000 people and has in excess of £12 billion in turnover generated annually by the 4,700 knowledge-intensive firms in and around the city. The city publishes 341 patents per 100,000 residents. http://www.cam.ac.uk

The Wellcome Sanger Institute

The Wellcome Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. To celebrate its 25th year in 2018, the Institute is sequencing 25 new genomes of species in the UK. Find out more at http://www.sanger.ac.uk or follow @sangerinstitute

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.