Nav: Home

Molecular memory can be used to increase the memory capacity of hard disks

October 18, 2018

Single-molecule magnets are molecules capable of remembering the direction of a magnetic field that has been applied to them over relatively long periods of time once the magnetic field is switched off. Thus, one can "write" information into molecules. Single-molecule magnets have potential applications, for example, as high-density digital storage media and as parts of microprocessors in quantum computers. Practical applications have, however, been greatly hindered by the fact that single-molecule magnets are operational only at extremely low temperatures. Their intrinsic memory properties often vanish if they are heated more than a few degrees above absolute zero (-273°C); therefore, single-molecule magnets can be only studied under laboratory conditions by cooling them with liquid helium.

More favorable conditions for technological applications

Researchers have now, for the first time, managed to synthesize and characterize a single-molecule magnet which retains its memory properties above the temperature of liquid helium (-196°C). The magnet can be called the first high-temperature single-molecule magnet.

- When considering our everyday life, liquid nitrogen is extremely cold. However, compared to liquid helium, which has so far been required to study single-molecule magnets, the liquid nitrogen temperature is a huge leap upwards. Liquid nitrogen is more than 300 times cheaper than liquid helium and much more readily available, enabling technological applications. Therefore, the research constitutes an important scientific milestone, describes postdoctoral researcher Akseli Mansikkamäki from the Department of Chemistry of the University of Jyväskylä.

New insights from computations

The new dysprosium metallocene compound is the culmination of several years of research. The project has required the development of new approaches in organometallic lanthanide chemistry and deep insights of the relationship between the microscopic electronic structure and magnetic properties of the studied systems.
  • Computational methods based on quantum mechanics and the theory of relativity play an important role in the characterization and design of new single-molecule magnets. The large computational resources available today have enabled, for example, to clarify the interaction between crystal vibrations and the electronic structure of molecules studied in the present work, Mansikkamäki explains.


The research also provides new insights and guidelines how to further improve the magnetic properties of single-molecule magnets and how to bring technological applications closer to reality.
-end-
The research project has been led by professor Richard Layfield at the University of Sussex, UK. The synthetic work and characterization of the prepared compounds was carried out at Layfield's research group and magnetic measurements were performed at Sun Yat-sen University, Guangzhou , PRC under the leadership of professor Ming-Liang Tong. Postdoctoral researcher Akseli Mansikkamäki carried out theoretical calculations and analyses at the Department of Chemistry of the University of Jyväskylä. In Finland, the research has been financed by the Academy of Finland. Computational resources were provided by the CSC-IT Center for Science and the University of Jyväskylä.

The work has been published in the highly respected journal Science on 18.10.2018.

Further information:

University of Jyväskylä - Jyväskylän yliopisto

Related Magnetic Field Articles:

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.