Energy flow in the nano range

October 18, 2019

Plants and bacteria lead the way: They can capture the energy of sunlight with light-harvesting antennas and transfer it to a reaction centre. Transporting energy efficiently and in a targeted fashion in a minimum of space - this is also of interest to mankind. If scientists were to master it perfectly, they could significantly improve photovoltaics and optoelectronics.

Two new spectroscopic methods

But how can the flow of energy be observed? This is what Tobias Brixner's group at the Institute of Physical and Theoretical Chemistry at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, is working on.

In the journal Nature Communications, the team now presents two new spectroscopic methods with which energy transport on the nanoscale can be observed. According to the JMU professor, the new findings provide valuable information for the design of artificial light-harvesting antennas.

These research successes were achieved in cooperation with the working groups of Christoph Lambert and Todd Marder (JMU Würzburg), Uwe Bunz and Andreas Dreuw (University of Heidelberg) as well as Jasper Knoester and Maxim Pshenichnikov (University of Groningen, Netherlands).

Nanotubes imitate nature

Using the new methods, the research teams have succeeded in deciphering the energy transport in double-walled nanotubes made up of thousands of dye molecules. These tiny tubes serve as models for the light-harvesting antennas of photosynthetically active bacteria.

At low light intensities, the energetic excitations are transported from the outer to the inner wall of the tubes. At high intensities, on the other hand, the excitations only move along the outer wall - if two excitations meet there, one of them disappears. "This effect, which has been known for some time, can be made directly visible with our method for the first time," says Brixner.

The measurements could be carried out by combining the exciton-exciton-interaction-two-dimensional spectroscopy (EEI2D spectroscopy) method developed in the Brixner group with a microfluidic arrangement of the Groningen group.

Data acquisition is much faster

In the second paper, the research teams also demonstrate a new approach to measuring energy flows. The highlight: The speed of the data recording could be extremely increased compared to the state of the art. Within just eight minutes, it was possible to measure up to 15 different 3D spectra simultaneously in a single experiment. Traditional methods, on the other hand, typically require several hours for only a single spectrum.

As a basis for measuring coherent spectra over three frequency dimensions, the researchers employed a fast method of varying the temporal sequence of ultrashort laser pulses. "The expansion from 2D to 3D frequency analysis and the increase in the number of light-matter interactions from the four usual in the literature to six now provides detailed insights into the dynamics of highly excited states," says Brixner.
-end-
Publications

B. Kriete, J. Lüttig, T. Kunsel, P. Malý, T. L. C. Jansen, J. Knoester, T. Brixner, and M. S. Pshenichnikov, "Interplay between structural hierarchy and exciton diffusion in artificial light harvesting", Nature Communications, https://doi.org/10.1038/s41467-019-12345-9 (2019)

S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T. B. Marder, U. H. F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, "Rapid multiple?quantum three?dimensional fluorescence spectroscopy disentangles quantum pathways", Nature Communications, https://doi.org/10.1038/s41467-019-12602-x (2019)

University of Würzburg

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.