Killer algae a key player in mass extinctions

October 19, 2009

Boulder, CO, USA - Supervolcanoes and cosmic impacts get all the terrible glory for causing mass extinctions, but a new theory suggests lowly algae may be the killer behind the world's great species annihilations.

Today, just about anywhere there is water, there can be toxic algae. The microscopic plants usually exist in small concentrations, but a sudden warming in the water or an injection of dust or sediment from land can trigger a bloom that kills thousands of fish, poisons shellfish, or even humans.

James Castle and John Rodgers of Clemson University think the same thing happened during the five largest mass extinctions in Earth's history. Each time a large die off occurred, they found a spike in the number of fossil algae mats called stromatolites strewn around the planet. Castle will be presenting the research on Monday, 19 October at the annual meeting of the Geological Society of American in Portland, Oregon.

"If you go through theories of mass extinctions, there are always some unanswered questions," Castle said. "For example, an impact - how does that cause species to go extinct? Is it climate change, dust in the atmosphere? It's probably not going to kill off all these species on its own."

But as the nutrient-rich fallout from the disaster lands in the water, it becomes food for algae. They explode in population, releasing chemicals that can act as anything from skin irritants to potent neurotoxins. Plants on land can pick up the compounds in their roots, and pass them on to herbivorous animals.

If the theory is right, it answers a lot of questions about how species died off in the ancient world. It also raises concerns for how today's algae may damage the ecosystem in a warmer world.

"Algae growth is favored by warmer temperatures," Castle said. "You get accelerated metabolism and reproduction of these organisms, and the effect appears to be enhanced for species of toxin-producing cyanobacteria."

He added that toxic algae in the United States appear to be migrating slowly northward through the country's ponds and lakes, and along the coast as temperatures creep upward. Their expanding range portends a host of problems for fish and wildlife, but also for humans, as algae increasingly invade reservoirs and other sources of drinking water.
-end-
**WHEN & WHERE**

Role of toxin-producing algae in Phanerozoic mass extinctions: evidence from modern environments and the geologic record
Monday, 19 October 2009, 10:30 -10:45 a.m.
Oregon Convention Center, Portland Ballroom 253

View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_163685.htm

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

Geological Society of America

Related Algae Articles from Brightsurf:

Sprat, mollusks and algae: What a diet of the future might look like
Rethinking what we eat is essential if we hope to nourish ourselves sustainably and mind the climate.

Ocean algae get 'coup de grace' from viruses
Scientists have long believed that ocean viruses always quickly kill algae, but Rutgers-led research shows they live in harmony with algae and viruses provide a 'coup de grace' only when blooms of algae are already stressed and dying.

New science behind algae-based flip-flops
Sustainable flip-flops: A team of UC San Diego researchers has formulated polyurethane foams made from algae oil to meet commercial specifications for midsole shoes and the foot-bed of flip-flops.

Battling harmful algae blooms
In two separate studies, the University of Delaware's Kathryn Coyne is looking at why one species of algae has some strains that can cause fish kills and others that are non-toxic, while examining an algicidal bacterium found in Delaware's Inland Bays that could provide an environmentally-friendly approach to combatting algae blooms.

Algae as living biocatalysts for a green industry
Many substances that we use every day only work in the right 3D structure.

Algae in the oceans often steal genes from bacteria
Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.

Algae shown to improve gastrointestinal health
A green, single-celled organism called Chlamydomonas reinhardtii has served as a model species for topics spanning algae-based biofuels to plant evolution.

How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.

Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.

Read More: Algae News and Algae Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.