Study: Added oxygen during stroke reduces brain tissue damage

October 19, 2009

COLUMBUS, Ohio - Scientists have countered findings of previous clinical trials by showing that giving supplemental oxygen to animals during a stroke can reduce damage to brain tissue surrounding the clot.

The timing of the delivery of 100 percent oxygen - either by mask or in a hyperbaric chamber - is critical to achieving the benefit, however.

"The use of supplemental oxygen after blood flow is restored in the brain appears to actually cause harm by unleashing free radicals," said Savita Khanna, assistant professor of surgery at Ohio State University and principal investigator of the research. "The resulting tissue damage was worse than stroke-affected tissue that received no treatment at all."

Previous clinical trials in humans have suggested that administering oxygen under pressure could harm stroke patients. But the studies did not take into account the status of blood flow in the brain at the time the oxygen was delivered, Khanna noted.

The types of stroke under study are ischemic, meaning a clot is blocking blood flow in the brain, rather than hemorrhagic, strokes that occur when blood vessels rupture in the brain.

The new Ohio State study showed that the use of pure oxygen that was delivered by mask during stroke was also effective, making for easier clinical application of such a therapy when the time for that is right.

However, technology doesn't yet allow for quick and continuous real-time measurement of blood flow in the brain in a hospital. This means clinicians treating stroke patients cannot risk administering hyperbaric oxygen that could do more harm than good if it is not timed properly.

"Hyperbaric oxygen during stroke shows the promise of being an effective tool, but there are things that need to occur before this can be applied in a clinical setting," said Cameron Rink, assistant professor of surgery at Ohio State and a co-investigator on the research. "We need to find better ways to monitor blood flow in humans in real time."

Rink presented the research Monday (10/19) during a poster session at the Society for Neuroscience annual meeting in Chicago.

Stroke is the third-leading cause of death in the United States, and an effective treatment remains elusive. So-called "clot-busting" drugs dissolve the clots, but typically must be administered within three hours of the stroke's onset. The average time between the start of a stroke and a patient's arrival at a hospital is about four hours - which adds to the treatment challenge, according to the researchers.

Khanna, Rink and colleagues tested the effects of supplemental oxygen therapy on five groups of rats in which the scientists induced a 90-minute ischemic stroke and then restored blood flow in the animals' brains.

Two groups of animals received either normal oxygen or pressurized oxygen while blood flow was blocked in the brain. Two other sets of rats received normal or pressurized oxygen after blood flow was restored. A control group received no supplemental oxygen, breathing room air instead.

Two days later, the researchers examined the rats' brains using powerful 4.7-Tesla magnetic resonance imaging to calculate the volume of damaged tissue. The images showed the size of the infarct, or the area of tissue susceptible to stroke damage as a result of poor oxygenation.

The images showed that the animals that received supplemental oxygen treatment while blood flow was blocked had a significantly smaller amount of tissue damage compared to the rats that received oxygen after blood flow was restored, Khanna said.

By further examining images of the rats' brains, the scientists determined that the supplemental oxygen during the active period of a stroke specifically reduced the death of neurons and prevented the damage that free radicals can cause to lipids that help protect those brain cells. By comparison, more dead neurons and oxidative stress were found in the brains of rats receiving oxygen only after blood flow was restored.

"Ultimately, the supplemental oxygen after blood flow is restored is more than the tissue can handle, and is more than it needs. Why add oxygen on top of tissue that's already oxygenated?" Rink said. "Supplemental oxygen during the blockage, on the other hand, is highly protective."

The researchers are using other technologies to determine how the loss of oxygen affects the functions of genes in the brain. Of the approximately 30,000 genes investigated to date, at least 6,000 are either inactivated or highly activated when a stroke reduces the oxygen in the brain. Their future work will explore the ramifications of those changed gene functions.
Khanna and Rink conducted this research with Sashwati Roy, Pavan Ananth and Chandan Sen of Ohio State's Department of Surgery, and Mahmood Khan and Periannan Kuppusamy of the Department of Internal Medicine.

Contacts: Savita Khanna, (614) 247-7840; or Cameron Rink, (614) 859-2861; (Khanna and Rink will be at the Society for Neuroscience meeting from Oct. 18-20, and will be traveling until Oct. 25. E-mail is the best way to contact them during that time.)

Written by Emily Caldwell, (614) 292-8310;

Ohio State University

Related Stroke Articles from Brightsurf:

Stroke alarm clock may streamline and accelerate time-sensitive acute stroke care
An interactive, digital alarm clock may speed emergency stroke care, starting at hospital arrival and through each step of the time-sensitive treatment process.

Stroke patients with COVID-19 have increased inflammation, stroke severity and death
Stroke patients who also have COVID-19 showed increased systemic inflammation, a more serious stroke severity and a much higher rate of death, compared to stroke patients who did not have COVID-19, according a retrospective, observational, cross-sectional study of 60 ischemic stroke patients admitted to UAB Hospital between late March and early May 2020.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

More stroke awareness, better eating habits may help reduce stroke risk for young adult African-Americans
Young African-Americans are experiencing higher rates of stroke because of health conditions such as high blood pressure, diabetes and obesity, yet their perception of their stroke risk is low.

How to help patients recover after a stroke
The existing approach to brain stimulation for rehabilitation after a stroke does not take into account the diversity of lesions and the individual characteristics of patients' brains.

Kids with headache after stroke might be at risk for another stroke
A new study has found a high incidence of headaches in pediatric stroke survivors and identified a possible association between post-stroke headache and stroke recurrence.

High stroke impact in low- and middle-income countries examined at 11th World Stroke Congress
Less wealthy countries struggle to meet greater need with far fewer resources.

Marijuana use might lead to higher risk of stroke, World Stroke Congress to be told
A five-year study of hospital statistics from the United States shows that the incidence of stroke has risen steadily among marijuana users even though the overall rate of stroke remained constant over the same period.

We need to talk about sexuality after stroke
Stroke survivors and their partners are not adequately supported to deal with changes to their relationships, self-identity, gender roles and intimacy following stroke, according to new research from the University of Sydney.

Standardized stroke protocol can ensure ELVO stroke patients are treated within 60 minutes
A new study shows that developing a standardized stroke protocol of having neurointerventional teams meet suspected emergent large vessel occlusion (ELVO) stroke patients upon their arrival at the hospital achieves a median door-to-recanalization time of less than 60 minutes.

Read More: Stroke News and Stroke Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to