Conserving resources: Producing circuit boards with plasma

October 19, 2010

Flexible circuits can be found in many devices where space and weight considerations are dominant in the design of electronics: in cars, in cameras and video equipment, in mini-computers for athletes or in inkjet printers. And the market continues to grow: according to the business consultancy Frost & Sullivan, sales in this area will grow to more than $16 billion by the year 2014.

At K 2010, the trade fair for plastics in Düsseldorf, Germany, scientists from the IST in Braunschweig will unveil a new reel-to-reel technology for the production of flexible circuits and biosensors; the new technology is known as »P3T«, which is shorthand for »Plasma Printing and Packaging Technology«. The benefits: P3T involves considerably fewer process steps than existing processes, and it conserves raw materials. Unlike previous methods, the researchers do not start with a polymer film metalized over its entire surface from which excess metal is then removed to create the circuits. Instead, to produce flexible circuit boards, they apply circuits made of copper to the film that serves as substrate. In the case of biosensors, palladium is used. They use plasma at atmospheric pressure and galvanization instead of vacuum-pressure and laser-based methods to achieve inexpensive and resource-efficient production.

Dr. Michael Thomas, director of the research group at IST, explains: »During production of circuits for an RFID antenna, you often have to etch away between 50 and 80 percent of the copper used. This results in considerable amounts of copper scrap that either has to be disposed or reprocessed using relatively elaborate methods.« The IST approach is different: there, scientists use the additive process to apply the structures they want directly to the substrate sheeting.

The first two process steps are plasma printing at atmospheric pressure and metallization using well-known galvanization methods. Plasma printing uses the kind of deeply engraved roller familiar from the area of conventional rotogravure printing. During the printing process, microplasms are electrically generated in the engraved recesses of the roller; these microplasms chemically alter the surface of the plastic substrate where the circuits are to be applied later in the process.

The process gas from which the plasma is created is usually a mixture of nitrogenous gases. As IST researcher Thomas emphasizes: »The chemical changes we need begin to form on the surface of the film; these changes ensure that the plastic can be wetted with water in these precise areas and will be metallizable using suitable plating baths. This means considerable savings of energy and material,« Thomas adds. And this is a decisive competitive factor: the prices for raw materials - for copper and palladium, for example - have risen by around 150 percent in the past three years.

In the joint P3T project sponsored by the German Federal Ministry of Education and Research (BMBF) P3T, researchers are currently working very hard to improve the individual processes involved in the manufacture of flexible circuit boards and biosensors. They are closely scrutinizing all of the P3T production steps - from plasma printing to assembly and coordinating all of the processes with one another in a production line.
-end-


Fraunhofer-Gesellschaft

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.