Development of non-natural flavanones as antimicrobial agents

October 19, 2011

As microbes grow increasingly resistant to existing antibiotics, scientists are looking in new directions for drug development. A new paper, published Oct. 19 in the online journal PLoS ONE, reports the synthesis and testing of a family of potential antimicrobial molecules and finds that their therapeutic effect is comparable to that of many currently used antimicrobial agents.

Most of the compounds showed broad activity against a variety of bacteria and fungi, but were not toxic to mammalian cells, and thus potentially open a new avenue for the development of novel antimicrobial treatments.

The team, led by Professor Mattheos Koffas of Rensselaer Polytechnic Institute and Professor John Panepinto of the University at Buffalo, focused on compounds related to flavonoids, which are molecules naturally found in many plants that have been suggested to have various positive health effects.

Rather than limiting themselves to these existing compounds, however, the researchers synthesized a variety of related molecules to see if they could generate a product with improved antibiotic activity.

They found that many of these novel molecules were effective against bacterial species such as the gram-negative E. coli and the gram-positive B. subtilis, as well as the fungal pathogens A. fumigatus and C. neoformans. According to lead scientist, Dr. Koffas, "plant polyphenols have been explored heavily for their strong antioxidant properties and very little is known about other health benefits they may have. Our work clearly demonstrates their potential as a vast untapped source of valuable antimicrobial agents."

One particular compound showed especially promising activity and is likely to be the subject of further work toward the development of new antimicrobial treatments. In addition, the investigators are currently generating a much wider array of compounds in order to identify more compounds with even more potent antimicrobial properties.
-end-
Citation: Fowler ZL, Shah K, Panepinto JC, Jacobs A, Koffas MAG (2011) Development of Non-Natural Flavanones as Antimicrobial Agents. PLoS ONE 6(10):e25681. doi:10.1371/journal.pone.0025681

Financial Disclosure: Funds were provided from the Dean of Engineering, University at Buffalo, the State University of New York. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: One of the authors, Zach Fowler, is currently employed by Praxair Inc. None of the work presented in the manuscript is related to any marketed products by this company or resulted from consulting or any other form of interaction with this company. The authors would also like to declare that Zachary Fowler's affiliation with Praxair does not alter their adherence to all the PLoS ONE policies on sharing data and materials.

Disclaimer: This press release refers to upcoming articles in PLoS ONE. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

About PLoS ONE

PLoS ONE is the first journal of primary research from all areas of science to employ a combination of peer review and post-publication rating and commenting, to maximize the impact of every report it publishes. PLoS ONE is published by the Public Library of Science (PLoS), the open-access publisher whose goal is to make the world's scientific and medical literature a public resource.

All works published in PLoS ONE are Open Access. Everything is immediately available--to read, download, redistribute, include in databases and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authors and source are properly attributed. For more information about PLoS ONE relevant to journalists, bloggers and press officers, including details of our press release process and our embargo policy, see the everyONE blog at http://everyone.plos.org/media.

PLOS

Related Drug Development Articles from Brightsurf:

FDA support for oncology drug development during COVID-19
This Viewpoint from the U.S. Food and Drug Administration puts into context recent guidance on clinical trials during COVID-19 for oncology and shares insight regarding regulatory challenges and lessons learned.

COVID-19 drug development could benefit from approach used against flu
A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better -- they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.

Chemistry breakthrough could speed up drug development
Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.

New model of the GI tract could speed drug development
MIT engineers have devised a way to speed new drug development by rapidly testing how well they are absorbed in the small intestine.

Super-charging drug development for COVID-19
Researchers are using cell-free manufacturing to ramp up production of valinomycin, a promising drug that has proven effective in obliterating SARS-CoV in cellular cultures.

Drug development for rare diseases affecting children is increasing
The number of treatments for rare diseases affecting children has increased, a new study suggests.

New opportunity for cancer drug development
After years of research on cell surface receptors called Frizzleds, researchers at Karolinska Institutet in Sweden provide the proof-of-principle that these receptors are druggable by small molecules.

Novel paradigm in drug development
Targeted protein degradation (TPD) is a new paradigm in drug discovery that could lead to the development of new medicines to treat diseases such as cancer more effectively.

Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.

A breakthrough for brain tumor drug development
Glioblastoma is a devastating disease with poor survival stats due in part to a lack of preclinical models for new drug testing.

Read More: Drug Development News and Drug Development Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.