Nav: Home

Head injury causes the immune system to attack the brain

October 19, 2014

Scientists have uncovered a surprising way to reduce the brain damage caused by head injuries - stopping the body's immune system from killing brain cells. The study, published in the open access journal Acta Neuropathologica Communications, showed that in experiments on mice, an immune-based treatment reduced the size of brain lesions. The authors suggest that if the findings apply to humans, this could help prevent brain damage from accidents, and protect players of contact sports like American football, rugby and boxing.

To date, there are no effective treatments to prevent or reverse the damage sustained after brain injury. The researchers were testing the theory that blows to the head cause brain damage, in part, because of the breakdown of the blood-brain barrier, allowing the immune cells in the blood to come into contact with brain cells and destroy them. They hypothesized that mice missing a vital immune component would have less brain damage from trauma, and that a treatment which blocks a component of the immune system would prevent damage.

The component they were working on was CD74, which plays a crucial part in the immune system's response to disease-causing agents. CD74 is broken into products that fit into the groove of cell surface immune response proteins as part of the chain of events that activates T cells - immune cells that normally attack infected (or damaged) cells in the body. It was thought that these cells might also attack the brain cells if the blood-brain barrier is down. A treatment known as CAP stops the T-cells from being activated, by fitting into the activation site in the proteins and blocking the interaction, meaning that the pathway cannot continue.

They tested this theory by a range of tests involving a total of 32 mice. The mice were divided into groups that had the different combinations of: CD74 deficient mice vs control mice; a sham brain injury or a real brain injury; and the CAP treatment or a saline injection as a control.

To test the hypothesis that the immune system causes brain damage after a trauma, the scientists compared the lesion size in CD74 deficient mice, vs control strain after a real brain trauma, with the saline injection. They found that the control mice with a fully working immune system had larger lesions, which suggests that the immune system is part of the reason for brain cells breaking down after a trauma.

To test whether the CAP treatment reduced brain damage after trauma, they compared control mice with a real brain injury that were given the CAP treatment against similar mice that were given the saline control. The mice that received the CAP treatment had smaller brain lesions, suggesting that it did reduce the damage caused by brain trauma. They found these lesions were as small as those in the CD74 deficient mice, further supporting the hypothesis that the treatment was successful because it stops the immune system from attacking the brain.
-end-
Media Contact
Alanna Orpen
PR Assistant
BioMed Central
T: +44 (0)20 3192 2054
E: alanna.orpen@biomedcentral.com

Notes to Editor

1. Research
Traumatic brain injury causes selective, CD74-dependent, peripheral lymphocyte activation that exacerbates neurodegeneration
Richard P Tobin, Sanjib Mukherjee, Jessica M Kain, Susannah K Rogers, Stephanie K Henderson, Heather L Motal, M. Karen Newell Rogers and Lee A Shapiro
Acta Neuropathologica Communications 2: 143

During embargo, please contact Alanna Orpen (alanna.orpen@biomedcentral.com) for a copy of the paper.

After embargo, article available at journal website here: http://www.actaneurocomms.org/content/2/1/143

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Acta Neuropathologica Communications publishes experimental and descriptive articles on the pathology of nervous system and skeletal muscle disorders and on mechanisms of neurological disease using morphological, molecular and cell biology methods.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

BioMed Central

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.