Nav: Home

Control system serpent: Scientists propose new model for automation

October 19, 2016

In 360 BC, Plato wrote, "Whatever comes into existence, always comes as a whole." In 2016, scientists are using the same philosophy to develop a new automation model for robotic systems.

"No phenomenon exists entirely alone. Each is a part of other phenomena," wrote Hua Chen, an associate professor at Hohai University, Chanzhou Campus, with YangQuan Chen, a professor at the School of Engineering, University of California, Merced.

In a paper published in IEEE/CAA Journal of Automatica Sinica (JAS), Chen and Chen proposed a new model for designing control systems used in automation. Traditionally, a control system typically consists of a machine directing or responding to another machine's behavior. Each piece is precisely defined as a cause and effect. The proposed model disregards such definitions.

The authors write of the Ouroboros, an ancient symbol of a snake eating its own tail, as a representative example of their method. It's near impossible to decipher how the snake came to bite itself, nor to clearly define where the head ends and the tail begins. The circle supports itself as a whole system.

"Different from the traditional control standpoint, the principle of self-support idea treats the control inputs as an essential part of the control system dynamics itself," Hua Chen said. "In other words, in a closed-loop setting, control input signals and [the] system's behaviors are interlaced, serving mutually a cause and effect pair -- thus, a 'one-snake' picture."

By thinking of the whole instead of separate parts, it's possible to create a better system capable of goals with variable parameters, such as an autonomous vehicle tracking an unknown target. "Our suggested [generalized fractional-order principle of self-support] control strategy is an important method when considering the system with long term memory, [as] our methods can be less model dependent or even model-free, yet with desirable robustness characteristics," said Hua Chen.

The mathematics supporting the proposed method rely on the inclusive attributes of fractional order calculus, in which single equation may be used to describe several potential outcomes over a significant length of time. The results of such mathematics then inform the next step, so any miscalculations can be corrected on the fly within the system.

"Just as [with the snake circle]," Hua Chen said, "if we consider the control input as [part of] its inner dynamics -- [meaning] the controller is not the reason of moving -- it also can be looked [at] as the results of the tracking error feedback."
Fulltext of the paper is available:

IEEE/CAA Journal of Automatica Sinica (JAS) is a joint publication of the Institute of Electrical and Electronics Engineers, Inc (IEEE) and the Chinese Association of Automation. JAS publishes papers on original theoretical and experimental research and development in all areas of automation. The coverage of JAS includes but is not limited to: Automatic control/Artificial intelligence and intelligent control/Systems theory and engineering/Pattern recognition and intelligent systems/Automation engineering and applications/Information processing and information systems/Network based automation/Robotics/Computer-aided technologies for automation systems/Sensing and measurement/Navigation, guidance, and control.

To learn more about JAS, please visit:

Chinese Association of Automation

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...