Nav: Home

Tweaking the immune response might be a key to combat neurodegeneration

October 19, 2016

Zebrafish and humans are obviously quite different species. However, they share an evolutionary past that translates into various similarities on the cellular and molecular scale. "The regenerative skills apparent in zebrafish might lie dormant in humans and might somehow be activated by pulling the right strings", Dr. Kizil explains. "This is why we study if and how zebrafish cope with neurodegeneration. We want to understand the basic molecular mechanisms of such a regenerative aptitude in order to design better clinical therapies."

In the current study, the Dresden-based neuroscientist and his co-workers succeeded in mimicking symptoms of Alzheimer's disease in zebrafish brain. Conditions were triggered by Amyloid-Beta42 (Aβ42) peptides - one of the major contributors to the disease in human brains. Similar to our brains, Amyloid molecules accumulated in the neurons of zebrafish leading to immune response, synaptic degeneration, cell death, learning deficits and other dysfunctions. "This is the first time, such conditions have been generated in adult zebrafish through Aβ42 deposits", Kizil says.

The significance of neuro-immune crosstalk

The Aβ42 deposits triggered a special inflammation-related signaling pathway that ultimately lead to enhanced neurogenesis, i.e. new neurons were built. "We found that a molecule called Interleukin-4 is very much involved in the generation of neurons. The molecule is released by the dying neurons and immune system cells. It then acts on neural stem cells, which are the progenitors of neurons, by increasing their proliferation", Kizil says. "Interleukin-4 has been known to be a player in immune response and inflammation. But to date, the direct role of IL4 on stem cell proliferation has not been shown."

A better understanding of how we could manipulate inflammatory conditions might aid to develop novel therapies against Alzheimer's, Kizil argues. "In humans inflammation does not seem to act as a positive cue for regeneration as it does in zebrafish. Possibly because other factors interfere in a complex manner. Our zebrafish model offers the opportunity to study such factors one by one in a reductionist manner. Besides, our study points to the significance of the immune response. That is to say: by tweaking the immune response, for example with drugs, and targeting the right cell types, we might unlock the potential of human neural stem cells to proliferate and build new neurons. Of course, the challenge remains as to what will happen to those new neurons. But first things first: we have to start from the stem cells."
-end-
Original publication

"IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon Amyloid-β42 aggregation in adult zebrafish brain", Prabesh Bhattarai, Alvin Kuriakose Thomas, Mehmet Ilyas Cosacak, Christos Papadimitriou, Violeta Mashkaryan, Cynthia Froc, Susanne Reinhardt, Thomas Kurth, Andreas Dahl, Yixin Zhang, Caghan Kizil, Cell Reports, DOI: 10.1016/j.celrep.2016.09.075

DZNE - German Center for Neurodegenerative Diseases

Related Stem Cells Articles:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.