Nav: Home

Algae discovery offers potential for sustainable biofuels

October 19, 2016

James Umen, Ph.D., associate member at Donald Danforth Plant Science Center, and colleagues have discovered a way to make algae better oil producers without sacrificing growth. The findings were published September 6, in a paper titled, "Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas," in The Plant Cell. Umen and his team including lead author Inmaculada Couso, Ph.D., and collaborators Bradley Evans Ph.D., director, Proteomics & Mass Spectrometry and Doug Allen, Ph.D., USDA Research Scientist at the Danforth Center identified a mutation in the green alga Chlamydomonas which substantially removes a constraint that is widely observed in micro-algae where the highest yields of oil can only be obtained from starving cultures.

Umen and his team found the oil-accumulating mutation in Chlamydomonas, called vip1-1, while investigating how two conserved signaling systems interact with one another. One system involves a protein called TOR (target of rapamycin) whose activity is tuned to match cell growth rate with nutrient levels in the environment. The other system involves a family of proteins called VIP that produce highly phosphosphorylated small molecules called inositol polyphosphates that are thought to act as intracellular signals, but whose function in algae is not well-defined. The team found that when VIP activity was reduced by the vip1-1 mutation, cell growth became extremely sensitized to changes in TOR activity; but unexpectedly, this sensitivity was dependent on the sources of carbon nutrients that cells had available. When TOR-inhibited vip1-1 cells were given light for photosynthesis and supplemented with acetate-- a "free" source of extra carbon--their growth was completely arrested. However, the vip1-1 mutation had no impact on TOR-inhibited cell growth when acetate was removed and atmospheric CO2 was the only carbon source.

The connection between acetate and the growth behavior of vip1-1 cells led Umen and his team to investigate the mutant further to see if it had other metabolic alterations that could be detected without perturbing TOR signaling. Remarkably, they found that actively growing vip1 cells were oil overaccumulators that made extra storage oil compared to normal cells, and did so without incurring a significant growth penalty. Moreover, under starvation conditions when normal cells boost their oil content significantly, vip1-1 cells increased it even more with up to double the yields seen in normal cells.

"Our study reveals a new way to understand how cells control carbon metabolism and storage," said Inmaculada Couso, Ph.D., post-doctoral researcher, Institute of Plant Biochemistry and Photosynthesis. "As we decipher the inositol polyphosphate signaling code, we open up the prospect of being able to reprogram metabolism and make algae better producers of oil or other high value carbon-rich compounds."
-end-
About The Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The center's work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. To keep up to date with Danforth Center's current operations and areas of research, please visit, http://www.danforthcenter.org, featuring information on Center scientists, news, and the "Roots & Shoots" blog. Follow us on Twitter at @DanforthCenter.

Donald Danforth Plant Science Center

Related Algae Articles:

Algae: The final frontier
Algae dominate the oceans that cover nearly three-quarters of our planet, and produce half of the oxygen that we breathe.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universität Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
A better way to farm algae
Researchers at Syracuse University have developed a method that improves the growth of microalgae, which could have big implications for production of biofuels and other valuable chemicals.
Pretty in pink: Some algae like it cold
UC researchers are leading efforts to learn more about the effects of pink snow algae on glaciers and snowfields covering Pacific Northwest stratovolcanoes.
Public willing to pay to reduce toxic algae -- but maybe not enough
A collaboration of universities and government agencies has identified three key agricultural management plans for curtailing harmful algal blooms.
Why cryptophyte algae are really good at harvesting light
In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight.
Algae discovery offers potential for sustainable biofuels
Algae with altered intracellular signaling have increased oil yields.
Harnessing algae for the creation of clean energy
Researchers at Tel Aviv University have revealed how microalgae produce hydrogen, a clean fuel of the future, and suggest a possible mechanism to jumpstart mass production of this environmentally friendly energy source.

Related Algae Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...