Nav: Home

Highest resolution image of Eta Carinae

October 19, 2016

Led by Gerd Weigelt from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, a team of astronomers have used the Very Large Telescope Interferometer (VLTI) at ESO's Paranal Observatory to take a unique image of the Eta Carinae star system in the Carina Nebula.

This colossal binary system consists of two massive stars orbiting each other and is very active, producing stellar winds which travel at velocities of up to ten million kilometres per hour [1]. The zone between the two stars where the winds from each collide is very turbulent, but until now it could not be studied.

The power of the Eta Carinae binary pair creates dramatic phenomena. A "Great Eruption" in the system was observed by astronomers in the 1830s. We now know that this was caused by the larger star of the pair expelling huge amounts of gas and dust in a short amount of time, which led to the distinctive lobes, known as the Homunculus Nebula, that we see in the system today. The combined effect of the two stellar winds as they smash into each other at extreme speeds is to create temperatures of millions of degrees and intense deluges of X-ray radiation.

The central area where the winds collide is so comparatively tiny --a thousand times smaller than the Homunculus Nebula -- that telescopesin space and on the ground so far have not been able to image them in detail. The team has now utilised the powerful resolving ability of the VLTI instrument AMBER to peer into this violent realm for the first time. A clever combination -- an interferometer -- of three of the four Auxiliary Telescopes at the VLT lead to a tenfold increase in resolving power in comparison to a single VLT Unit Telescope. This delivered the sharpest ever image of the system and yielded unexpected results about its internal structures.

The new VLTI image clearly depict the structure which exists between the two Eta Carinae-stars. An unexpected fan-shaped structure was observed where the raging wind from the smaller, hotter star crashes into the denser wind from the larger of the pair.

"Our dreams came true, because we can now get extremely sharp images in the infrared. The VLTI provides us with a unique opportunity to improve our physical understanding of Eta Carinae and many other key objects", says Gerd Weigelt.

In addition to the imaging, the spectral observations of the collision zone made it possible to measure the velocities of the intense stellar winds [2]. Using these velocities, the team of astronomers were able to produce more accurate computer models of the internal structure of this fascinating stellar system, which will help increase our understanding of how these kind of extremely high mass stars lose mass as they evolve.

Team member Dieter Schertl (MPIfR) looks forward: "The new VLTI instruments GRAVITY and MATISSE will allow us to get interferometric images with even higher precision and over a wider wavelength range. This wide wavelength range is needed to derive the physical properties of many astronomical objects."
-end-
Notes

[1] The two stars are so massive and bright that the radiation they produce rips off their surfaces and spews them into space. This expulsion of stellar material is referred to as stellar "wind", and it can travel at millions of kilometres per hour.

[2] Measurements were done through the Doppler effect. Astronomers use the Doppler effect (or shifts) to calculate precisely how fast stars and other astronomical objects move toward or away from Earth. The movement of an object towards or away from us causes a slight shift in its spectral lines. The velocity of the motion can be calculated from this shift.

More information

This research was presented in a paper to appear in Astronomy and Astrophysics.

The team is composed of G. Weigelt (Max Planck Institute for Radio Astronomy, Germany), K.-H. Hofmann (Max Planck Institute for Radio Astronomy, Germany), D. Schertl (Max Planck Institute for Radio Astronomy, Germany), N. Clementel (South African Astronomical Observatory, South Africa) , M.F. Corcoran (Goddard Space Flight Center, USA; Universities Space Research Association, USA), A. Damineli (Universidade de São Paulo, Brazil ), W.-J. de Wit (European Southern Observatory, Chile), R. Grellmann (Universität zu Köln, Germany),J. Groh (The University of Dublin, Ireland ), S. Guieu (European Southern Observatory, Chile), T. Gull (Goddard Space Flight Center, USA), M. Heininger (Max Planck Institute for Radio Astronomy, Germany) , D.J. Hillier (University of Pittsburgh, USA), C.A. Hummel (European Southern Observatory, Germany), S. Kraus (University of Exeter, UK), T. Madura (Goddard Space Flight Center, USA), A. Mehner (European Southern Observatory, Chile), A. Mérand ( European Southern Observatory, Chile), F. Millour (Université de Nice Sophia Antipolis, France), A.F.J. Moffat (Université de Montréal, Canada), K. Ohnaka (Universidad Católica del Norte, Chile), F. Patru (Osservatorio Astrofisico di Arcetri, Italy), R.G. Petrov (Université de Nice Sophia Antipolis, France), S. Rengaswamy (Indian Institute of Astrophysics, India) , N.D. Richardson (The University of Toledo, USA), T. Rivinius (European Southern Observatory, Chile), M. Schöller (European Southern Observatory, Germany), M. Teodoro (Goddard Space Flight Center, USA) , and M. Wittkowski (European Southern Observatory, Germany)

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

* Research paper - http://www.eso.org/public/archives/releases/sciencepapers/eso1637/eso1637a.pdf

* Photos of the VLT - http://www.eso.org/public/images/archive/category/paranal/

* 3D model of the Homunculus Nebula - http://www.eso.org/public/products/models3d/3dmodel_004/

* Simulations of Eta Carinae - https://svs.gsfc.nasa.gov/11725

Contacts

Gerd Weigelt
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 243
Email: weigelt@mpifr-bonn.mpg.de

Dieter Schertl
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 301
Email: ds@mpifr-bonn.mpg.de

Norbert Junkes
Public Information Officer, Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 399
Email: njunkes@mpifr-bonn.mpg.de

Mathias Jäger
Public Information Officer
Garching bei München, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

ESO

Related Astronomers Articles:

Astronomers unveil 'heart' of Eta Carinae
An international team of astronomers has imaged the Eta Carinae star system -- a colossal binary system that consists of two massive stars orbiting each other -- including a region between the two stars in which extremely high-velocity stellar winds are colliding.
Astronomers capture best view ever of disintegrating comet
Astronomers have captured the sharpest, most detailed observations of a comet breaking apart 67 million miles from Earth, using NASA's Hubble Space Telescope.
Astronomers find the first 'wind nebula' around a magnetar
Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time.
Astronomers discover 'young Jupiter' exoplanet
The first planet detected by the Gemini Planet Imager is 100 light-years away but shares many of the characteristics of an early Jupiter.
Astronomers discover 'young Jupiter' exoplanet
A team of astronomers that includes University of Georgia professor Inseok Song has discovered a Jupiter-like planet within a young star system that could serve as a decoder ring for understanding how planets formed around the sun.
Astronomers discover 'young Jupiter' exoplanet
An international team of scientists that includes Travis Barman and Katie Morzinski from the University of Arizona has discovered a new exoplanet using the latest planet-hunting tool, the Gemini Planet Imager.
Astronomers discover 'young Jupiter' exoplanet
Astronomers have discovered a Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our sun.
Astronomers discover 'young Jupiter' exoplanet
Discovery of a Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our Sun.
Astronomers explain why a star is so hot right now
Astronomers have solved a mystery over small, unusually hot blue stars, 10 times hotter than our Sun, that are found in the middle of dense star clusters.
Astronomers unveil the farthest galaxy
An international team of astronomers led by Yale University and the University of California-Santa Cruz have pushed back the cosmic frontier of galaxy exploration to a time when the universe was only 5 percent of its present age.

Related Astronomers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...