Nav: Home

Study explains strength gap between graphene, carbon fiber

October 19, 2016

Carbon fiber, a pillar of strength in materials manufacturing for decades, isn't as good as it could be, but there are ways to improve it, according to Rice University scientists.

They found the polymer chains that make up a common carbon fiber are prone to misalign during manufacture, a defect the researchers compared with a faulty zipper that weakens the product.

The Rice lab of theoretical physicist Boris Yakobson set out to analyze these overlooked defects and suggest how they might be curtailed. The lab's work appears this month in Advanced Materials.

Carbon fibers were fabricated as long ago as the 19th century, when Thomas Edison made them as filaments for his prototype lightbulbs; but serious industrial development didn't begin until the late '50s. They are strong, flexible, conductive, heat-resistant and chemically inert, and have been used in tennis rackets, bicycle frames and aircraft, among many other products. They can also be spun into yarn for light and tough fabrics.

"Although well-established and mature, the field of carbon fibers has largely remained inert to using and benefiting from the intensive theoretical development in the 'young' field of low-dimensional nanocarbon," said Evgeni Penev, a research scientist in Yakobson's lab and co-author of the paper.

The Rice team built computer models to deduce the occurrence of defects in the most widely used carbon fiber manufacturing process, which involves heating polyacrylonitrile (PAN). At 1,500 degrees Celsius, the heat burns off all but the strongly bound carbon atoms, ultimately turning them into rudimentary graphene nanoribbons aligned in a way that prevents the ribbons from easily zipping into graphene's familiar honeycomb lattice.

Yakobson said the idea of this "misfusion" in fiber synthesis came to him while reading a biology paper about D-loops in RNA transcription. It occurred to him that such defects would be unavoidable in PAN-made carbon fiber as well. "It took a lot of work after that to determine their place and mechanical consequences in the fiber context," he said.

Molecular dynamics simulations revealed misfusion buckled the individual polymer chains and formed D-loops. These loops became the primary limiting factor of carbon fiber's vaunted strength; they reduced it by up to a factor of four and effectively dropped the theoretical estimates of fiber strength closer to what has been observed experimentally, the researchers reported.

"To me, the most intriguing part was realizing that D-loop defects enable the possibility of very large Burgers vectors, which are almost impossible in 3-D materials and would have been an absurd idea to even consider," said Nitant Gupta, a Rice graduate student and the paper's lead author. Burgers vectors are a measure of the strength-influencing distortions caused by dislocations in a crystal lattice.

To their surprise, the researchers discovered that when the PAN chains were misaligned with the fiber axis, the strength of the fiber increased despite the presence of D-loops.

They also determined D-loops might be prevented entirely by starting with graphene nanoribbons rather than PAN. Because D-loops are the most likely places for cracks to start, according to simulations, eliminating as many of them as possible would benefit the fiber's strength.

"Aside from specifics, we like to see this work as an attempt to cross-fertilize these fields at an atomistic-modeling level," Penev said. "We hope this will provide added value to those working in the field and eventually to a much broader audience."
-end-
Rice alumnus Vasilii Artyukhov, a former postdoctoral researcher, is co-author of the paper. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The U.S. Air Force Office of Scientific Research supported the research. The researchers used the National Science Foundation-supported DAVinCI supercomputer and Night Owls Time-Sharing Service administered by Rice's Center for Research Computing and procured in a partnership with Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/adma.201603009/full.

This news release can be found online at http://news.rice.edu/2016/10/19/study-explains-strength-gap-between-graphene-carbon-fiber/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Yakobson Research Group: http://biygroup.blogs.rice.edu

Rice University Department of Materials Science and NanoEngineering: https://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...