Nav: Home

2-D physics

October 19, 2016

In two dimensions, where states of matter are possible that cannot otherwise be realized, the laws of physics are different.

This is the scientific playground of UC Santa Barbara experimental condensed matter physicist Andrea Young. His group focuses on creating electronic devices where such states are realized, and develops measurement techniques to probe their macroscopic quantum mechanical properties.

In recognition of his accomplishments and to allow him to continue his work in this area, the David and Lucile Packard Foundation has awarded Young a 2016 Packard Fellowship for Science and Engineering. As one of this year's 18 innovative early-career recipients, Young will receive a grant of $875,000 over five years to pursue his research.

"We are thrilled that Professor Young's great promise and exciting research have proudly been rewarded with this prestigious and competitive fellowship," said UCSB Chancellor Henry T. Yang. "The Packard Foundation has recognized Andrea's passionate, creative and innovative work and his incredible potential to make groundbreaking discoveries. We at UC Santa Barbara look forward to his many future contributions as he continues to explore the frontiers of electronic states in quantum materials."

Young works with van der Waals heterostructures, which consist of layered stacks of two-dimensional materials, most notably graphene. This single-atom-thick material can be engineered to host a variety of exotic states -- for example, topological insulators, where current can flow unimpeded on the sample boundary while the two-dimensional bulk remains electrically insulating.

Using careful device design and large magnetic fields, Young can tune the electronic signature of the graphene to realize new states of matter. Among other projects, the Young lab is focused on demonstrating emergent non-Abelian quasiparticles -- collective modes of many electrons that behave as if they are made of fractions of an electron.

"Graphene gives us a lot of knobs -- over device structure, over the nature of the quantum mechanical wave functions and over how the electrons interact with each other," said Young, an assistant professor in UCSB's Department of Physics. "All together that means we can tackle really hard problems -- how do interacting electrons organize themselves? -- with enough control that we can actually find the answer and possibly use it."

Young earned his bachelor's and master's degrees as well as his doctorate from Columbia University. He has been a visiting scientist at the Weizmann Institute of Science in Israel and a Pappalardo Fellow at the Massachusetts Institute of Technology. He is also the recipient of the 2016 McMillan Award for outstanding contributions in condensed matter physics.

Among the nation's largest nongovernmental fellowships, Packard Fellowships are designed to allow maximum flexibility in how the funding is used. Packard Fellows have gone on to receive significant awards and honors, including the Nobel Prize in physics, the Fields Medal, the Alan T. Waterman Award and MacArthur Fellowships.

"Year after year, we continue to be inspired by the Packard Fellows' creativity, leadership in their fields and important breakthroughs in various fields of science and engineering," said Frances Arnold, a professor at the California Institute of Technology and chair of the Packard Fellowships Advisory Panel. "The revolutionary work of these talented researchers has the ability to profoundly impact the lives of their students and all of us in the world at large."
-end-


University of California - Santa Barbara

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".