Nav: Home

Merging mathematical and physical models toward building a more perfect flying vehicle

October 19, 2018

When designing flying vehicles, there are many aspects of which we can be certain but there are also many uncertainties. Most are random, and others are just not well understood. University of Illinois Professor Harry Hilton brought together several mathematical and physical theories to help look at problems in more unified ways and solve physical engineering problems.

"There are many equations because there are many phenomena. They are an attempt to describe mathematically the physical phenomena so that you can solve these problems. Words alone won't solve the problem. In this case, the problem is how do to build the perfect flying vehicle for specific missions and purposes," said Harry Hilton, a professor emeritus in the Department of Aerospace Engineering in the College of Engineering at the University of Illinois at Urbana-Champaign. Hilton looked at models independently of each other, then put them together.

"If you don't use the right model, the rest becomes an exercise in futility. It may be a model that's self-consistent but has no reality," he said. "Of course, the only way you can validate a model is to run experiments and even then, you're introducing another reality into the picture which is the experiment and not the real airplane. So each one of these is an idealization."

Hilton began by analyzing the da Vinci-Euler-Bernoulli theory of elastic bending. "It's deterministic, that is, determined that it is true with a probability of 1, based on a set of equations that give a set of answers," Hilton said. Added to that is the Timoshenko theory that takes load and other realistic properties such as wind shear into consideration. Hilton merges those theories with properties of viscoelastic materials--which includes time dependent material behavior and is of particular importance in modern composite materials and metals at elevated temperatures.

On top of it all, there are probabilities that certain things will happen.

"We may assume that the loads and material properties are certain, but they're not. Think about wind gusts. They can be sudden and unpredictable in strength and direction," he said. "It's the difference between deterministic - which means the probability is one and events are going to happen as opposed to a probability between zero and 1 where zero is never and 1 is always. "Probability happens in the real world. What's the probability of you getting hit by a car when you cross Green Street? Pretty high. When you cross Wright Street, maybe not as likely," he said.

Hilton's analysis provides a new model that takes into consideration as many, but still not all, known phenomena. These analyses, while more inclusive, form a linear beginning as a stepping stone to the real nonlinear random world.

"We use both math and physics in engineering, but within limitations. In physics, we don't always understand what's going on," he said. "That's the case here as well. There are pieces of principles that haven't been resolved. The mathematics are very exact but we tend to shade the equations in terms of what we can solve, rather than what it should be.

"The probabilistic analyses really pay off when designing a missile because you have just one flight to get it right. Either it hits the target or it doesn't. But it never comes back and is reused."

About his merging of models and its potential impact, Hilton quoted Winston Churchill from a speech he gave in 1942 concerning the Second Battle of El Alamein. "Churchill said, 'It's not the beginning of the end but the end of the beginning.' You could look at it that way. We're so far from the total knowledge that any one of these types of fundamental analytical papers is an end of the beginning."

The paper, "A Unified Linear Bending/Shear Beam (Spar) Theory: From Deterministic da Vinci-Euler-Bernoulli Elastic Beams to Nonhomogeneous Generalized Linear Viscoelastic Timoshenko ones with Random Properties, Loads and Realistic Physical Starting Transients, and Including Moving Shear Centers and Neutral Axes, Part I:Theoretical Modeling and Analyses," was written by Harry H. Hilton. It appears in MESA, the international journal of Mathematics in Engineering, Science and Aerospace.
-end-
Portions of the paper were presented in May 2018 at the N. Sri Namachchivya Symposium on Dynamical Systems, in Waterloo, Canada.

University of Illinois College of Engineering

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.