Sludge-powered bacteria generate more electricity, faster

October 19, 2020

Changing the surface chemistry of electrodes leads to the preferential growth of a novel electroactive bacterium that could support improved energy-neutral wastewater treatment.

To grow, electroactive bacteria break down organic compounds by transferring electrons to solid-state substrates outside their cells. Scientists have utilized this process to drive devices, such as microbial electrochemical systems, where the bacteria grow as a film on an electrode, breaking down the organic compounds in wastewater and transferring the resultant electrons to the electrode.

Scientists are now looking for ways to improve this process so it produces hydrogen gas at a negatively charged cathode electrode, which can then be converted to electricity to power wastewater treatment plants. This needs electroactive bacteria that efficiently transfer electrons to a positively charged anode electrode that do not use hydrogen for their growth.

Krishna Katuri, a research scientist in the lab of Pascal Saikaly, and colleagues have now found a novel electroactive bacterium, called Desulfuromonas acetexigens, that preferentially grows when the surface chemistry of the anode is changed in a specific way. The bacterium produces a higher current density than the most important current-producing bacterium, Geobacter sulfurreducens, and in a shorter time.

"We consider this a breakthrough discovery in the field," says Katuri.

In tweaking the surface chemistry, the researchers modified graphite electrodes to produce amino, carboxyl and hydroxide groups on their surface. When sludge and acetate, an organic compound used as feed, were placed in a glass chamber together with the electrode, bacteria quickly grew on the electrode's surface. Analyses revealed that D. acetexigens preferentially grew quickly on the modified electrodes, while G. sulfurreducens grew on conventionally used unmodified electrodes tested as controls.

Further analyses showed that D. acetexigens generated a current density of around 9 amperes per square meter within 20 hours of the process starting, compared with only 5 amperes per square meter in 72 hours by G. sulfurreducens.

Also, D. acetexigens does not use hydrogen as feed. This means that a microbial electrochemical reactor treating wastewater could combine the electrons and protons produced by this bacterium to generate hydrogen gas at the cathode.

"We next plan to study how D. acetexigens transfer electrons and to learn how to maximize their activity at the anode," says Saikaly. "We're also fabricating a pilot-scale microbial electrolysis cell reactor to treat domestic wastewater with this bacterium while recovering hydrogen gas as energy. Solar panels will be integrated into the pilot reactor with the aim of using solar and hydrogen energy to achieve energy-neutral or even possibly energy-positive wastewater treatment."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.