Smarter models, smarter choices

October 19, 2020

They call it artificial intelligence -- not because the intelligence is somehow fake. It's real intelligence, but it's still made by humans. That means AI -- a power tool that can add speed, efficiency, insight and accuracy to a researcher's work -- has many limitations.

It's only as good as the methods and data it has been given. On its own, it doesn't know if information is missing, how much weight to give differing kinds of information or whether the data it draws on is incorrect or corrupted. It can't deal precisely with uncertainty or random events -- unless it learns how. Relying exclusively on data, as machine-learning models usually do, it does not leverage the knowledge experts have accumulated over years and physical models underpinning physical and chemical phenomena. It has been hard to teach the computer to organize and integrate information from widely different sources.

Now researchers at the University of Delaware and the University of Massachusetts-Amherst have published details of a new approach to artificial intelligence that builds uncertainty, error, physical laws, expert knowledge and missing data into its calculations and leads ultimately to much more trustworthy models. The new method provides guarantees typically lacking from AI models, showing how valuable -- or not -- the model can be for achieving the desired result.

Joshua Lansford, a doctoral student in UD's Department of Chemical and Biomolecular Engineering, and Prof. Dion Vlachos, director of UD's Catalysis Center for Energy Innovation, are co-authors on the paper published Oct. 14 in the journal Science Advances. Also contributing were Jinchao Feng and Markos Katsoulakis of the Department of Mathematics and Statistics at the University of Massachusetts-Amherst.

The new mathematical framework could produce greater efficiency, precision and innovation for computer models used in many fields of research. Such models provide powerful ways to analyze data, study materials and complex interactions and tweak variables in virtual ways instead of in the lab.

"Traditionally in physical modelings, we build a model first using only our physical intuition and expert knowledge about the system," Lansford said. "Then after that, we measure uncertainty in predictions due to error in underlying variables, often relying on brute-force methods, where we sample, then run the model and see what happens."

Effective, accurate models save time and resources and point researchers to more efficient methods, new materials, greater precision and innovative approaches they might not otherwise consider.

The paper describes how the new mathematical framework works in a chemical reaction known as the oxygen reduction reaction, but it is applicable to many kinds of modeling, Lansford said.

"The chemistries and materials we need to make things faster or even make them possible -- like fuel cells -- are highly complex," he said. "We need precision.... And if you want to make a more active catalyst, you need to have bounds on your prediction error. By intelligently deciding where to put your efforts, you can tighten the area to explore.

"Uncertainty is accounted for in the design of our model," Lansford said. "Now it is no longer a deterministic model. It is a probabilistic one."

With these new mathematical developments in place, the model itself identifies what data are needed to reduce model error, he said. Then a higher level of theory can be used to produce more accurate data or more data can be generated, leading to even smaller error boundaries on the predictions and shrinking the area to explore.

"Those calculations are time-consuming to generate, so we're often dealing with small datasets -- 10-15 data points. That's where the need comes in to apportion error."

That's still not a money-back guarantee that using a specific substance or approach will deliver precisely the product desired. But it is much closer to a guarantee than you could get before.

This new method of model design could greatly enhance work in renewable energy, battery technology, climate change mitigation, drug discovery, astronomy, economics, physics, chemistry and biology, to name just a few examples.

Artificial intelligence doesn't mean human expertise is no longer needed. Quite the opposite.

The expert knowledge that emerges from the laboratory and the rigors of scientific inquiry is essential, foundational material for any computational model.
-end-
About the researchers

In addition to serving as CCEI director, Vlachos is the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering, professor of physics and astronomy, director of the Delaware Energy Institute and leader of Intensified Process Fundamentals for the RAPID Manufacturing Institute.

Lansford, a graduate of the University of Virginia and now a doctoral student at UD, is a 2019-20 Blue Waters Fellow, focused on developing predictive models in catalysis.

University of Delaware

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.