Material found in house paint may spur technology revolution

October 19, 2020

LIVERMORE, Calif. -- The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back machine learning and has the potential to revolutionize technologies like voice recognition, image processing and autonomous driving.

A team from Sandia National Laboratories, working with collaborators from the University of Michigan, published a paper in the peer-reviewed journal Advanced Materials that details a new method that will imbue computer chips that power machine-learning applications with more processing power by using a common material found in house paint in an analog memory device that enables highly energy-efficient machine inference operations.

"Titanium oxide is one of the most commonly made materials. Every paint you buy has titanium oxide in it. It's cheap and nontoxic," explains Sandia materials scientist Alec Talin. "It's an oxide, there's already oxygen there. But if you take a few out, you create what are called oxygen vacancies. It turns out that when you create oxygen vacancies, you make this material electrically conductive."

Those oxygen vacancies can now store electrical data, giving almost any device more computing power. Talin and his team create the oxygen vacancies by heating a computer chip with a titanium oxide coating above 302 degrees Fahrenheit (150 degree Celsius), separate some of the oxygen molecules from the material using electrochemistry and create vacancies.

"When it cools off, it stores any information you program it with," Talin said.

Energy efficiency a boost to machine learning

Right now, computers generally work by storing data in one place and processing that data in another place. That means computers have to constantly transfer data from one place to the next, wasting energy and computing power.

The paper's lead author, Yiyang Li, is a former Truman Fellow at Sandia and now an assistant professor of materials science at the University of Michigan. He explained how their process has the potential to completely change how computers work.

"What we've done is make the processing and the storage at the same place," Li said. "What's new is that we've been able to do it in a predictable and repeatable manner."

Both he and Talin see the use of oxygen vacancies as a way to help machine learning overcome a big obstacle holding it back right now -- power consumption.

"If we are trying to do machine learning, that takes a lot of energy because you are moving it back and forth and one of the barriers to realizing machine learning is power consumption," Li said. "If you have autonomous vehicles, making decisions about driving consumes a large amount of energy to process all the inputs. If we can create an alternative material for computer chips, they will be able to process information more efficiently, saving energy and processing a lot more data."

Research has everyday impact

Talin sees the potential in the performance of everyday devices.

"Think about your cell phone," he said. "If you want to give it a voice command, you need to be connected to a network that transfers the command to a central hub of computers that listen to your voice and then send a signal back telling your phone what to do. Through this process, voice recognition and other functions happen right in your phone."

Talin said the team is working on refining several processes and testing the method on a larger scale. The project is funded through Sandia's Laboratory Directed Research and Development program.
-end-
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Sandia news media contact:
Michael Langley
mlangle@sandia.gov
925-315-0437

DOE/Sandia National Laboratories

Related Computer Chips Articles from Brightsurf:

Researching the chips of the future
The chips of the future will include photonics and electronics; they will have a bandwidth, speed and processing and computing abilities that are currently unthinkable.

Jellyfish with your chips?
Jellyfish could replace fish and chips on a new sustainable takeaway menu to help keep threatened species off the plate.

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Electronic components join forces to take up 10 times less space on computer chips
Electronic filters are essential to the inner workings of our phones and other wireless devices.

New materials for extra thin computer chips
In order to create more compact electronic devices, new materials are being used - especially 2D-materials, which only consist of a single atomic layer.

Catalyst deposition on fragile chips
Researchers at the Ruhr-Universit├Ąt Bochum (RUB) and the University of Duisburg-Essen have developed a new method of depositing catalyst particles to tiny electrodes.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have developed an optical switch that routes light from one computer chip to another in just 20 billionths of a second -- faster than any other similar device.

WPI researchers discover vulnerabilities affecting billions of computer chips
Worcester Polytechnic Institute (WPI) security researchers Berk Sunar and Daniel Moghimi led an international team of researchers that discovered serious security vulnerabilities in computer chips made by Intel Corp. and STMicroelectronics.

Groundbreaking method detects defective computer chips
A technique co-developed by researchers at the Paul Scherer Institut in Switzerland and researchers at the USC Viterbi School of Engineering would allow companies and other organizations to non-destructively scan chips to ensure that they haven't been altered and that they are manufactured to design specifications without error

Read More: Computer Chips News and Computer Chips Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.