Preliminary study finds stem cells in blood restore damaged heart muscle

October 20, 2003

HOUSTON -- Based on promising animal data, researchers at The University of Texas M. D. Anderson Cancer Center say that cells taken from a patient's own blood may one day be able to repair heart tissue that has been damaged.

While other researchers have shown that stem cells derived from bone marrow and umbilical cord blood can regenerate cardiac tissue, this study demonstrates that adult stem cells circulating in blood can also repair a heart.

In the study, published online in the current issue of the journal Circulation, the scientists found that human blood stem cells -- "master" cells that produce other types of body cells as needed -- regenerated heart muscle cells as well as artery tissue in mice whose hearts were injured.

"This takes us a big step ahead," says the lead author, Edward T. H. Yeh, M.D., professor and chair of M. D. Anderson's Department of Cardiology. "Taking stem cells from blood is a lot easier, and a lot less painful, than taking it from bone marrow.

"For patients, it would be as simple as donating blood," he says. "We would then isolate these potent cells and give them back to the patient where the damage has occurred."

While the researchers are cardiologists and cancer specialists, and are interested in treating heart failure that occurs in up to 10 percent of patients who use chemotherapy, they say such cell-based regeneration therapy could benefit patients who have had a heart attack or other injuries that have led to heart failure. "Such a therapy cannot bring back dead heart muscle, but it can help restore weakened hearts, no matter what the cause of the damage was," says Yeh.

The research also contributes more evidence to the idea that stem cells circulating in the blood can transform themselves into different organ systems as needed to repair injury -- a notion dubbed "stem cell plasticity" that is both revolutionary and controversial. The theory, pioneered by M. D. Anderson researchers Martin Körbling, M.D., and Zeev Estrov, M.D., upsets longstanding beliefs that different kinds of tissue have their own supply of stem cells to repair damage. If correct, however, stem cell plasticity could be used to repair, or even replace tissues and organs injured by cancer, say Körbling and Estrov, who are co-authors on this study.

To conduct the study, the researchers collected a supply of human stem cells from what is generally regarded as debris from the process of banking human red blood. (After blood is collected from volunteers, it is separated into white and red blood cells, and the white blood cells are usually thrown away.) The scientists collected white blood cells and then searched for those cells that express a protein (CD34+) that is known to be associated with stem cells. They then isolated cells with the CD34+ marker from the white cells.

To test whether peripheral blood stem cells could regenerate tissue, the research team used two groups of mice that were engineered not to have an immune system, so that they would not reject human cells. One group of mice was given an artificially induced heart attack, and then immediately treated with an injection of the human stem cells. The other mice, with healthy hearts, also received the stem cell therapy.

The researchers found that in mice with an injured heart, new cardiac muscle cells (myocytes) had developed at the edge of damaged tissue, and several layers of new blood vessel tissue (endothelial and smooth muscle cells) had also grown. Little evidence of such repair was found in the mice with healthy hearts, says Yeh.

"We've shown that CD34+-associated cells can actually transform into three different cells used by the heart, and that tissue damage is critical to this process," he says.

Several sources for regenerative stem cells have been suggested, such as bone marrow, cord blood and embryonic cells, but this study "demonstrates that adult blood stem cells may be an alternative to these other sources of cells for myocardial regeneration," says Yeh. "And blood is a readily available source of stem cells that does not require significant manipulation."

Yeh notes that no stem cell protocol has been approved in the United States to date, and that most human trials using stem cells (those derived from bone marrow) have taken place in Europe and South America. Still, Yeh says he hopes his research can advance in the near future.
-end-
The study was funded by M. D. Anderson.

Co-authors include Estrov, a professor of the Division of Bioimmunotherapy; Körbling, a professor in the Bone Marrow Transplantation Program; and Sui Zhang, M.D., Ph.D., all of M. D. Anderson. Also collaborating on the study were Henry D. Wu, M.D, and James T. Willerson, M.D., of The University of Texas Health Science Center at Houston. Yeh carries a joint appointment at The Health Science Center and the Texas Heart Institute.

Written by Renee Twombly

University of Texas M. D. Anderson Cancer Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.