Stem cells' electric abilities might help their safe clinical use

October 20, 2005

Researchers from Johns Hopkins have discovered the presence of functional ion channels in human embryonic stem cells (ESCs). These ion channels act like electrical wires and permit ESCs, versatile cells that possess the unique ability to become all cell types of the body, to conduct and pass along electric currents.

If researchers could selectively block some of these channels in implanted cells, derived from stem cells, they may be able to prevent potential tumor development. The paper appears Aug. 5 online in the journal Stem Cells.

"A major concern for human ESC-based therapies is the potential for engineered grafts to go haywire after transplantation and form tumors, for instance, due to contamination by only a few undifferentiated human ESCs," says Ronald A. Li, Ph.D., an assistant professor of medicine at The Johns Hopkins University School of Medicine and senior author of the study. "Our discovery of functional ion channels, which are valves in a cell's outer membrane allowing the passage of charged atoms, the basis of electricity, provides an important link to the differentiation, or maturation, and cell proliferation, or growth of human ESCs."

Because human ESCs can potentially provide an unlimited supply of even highly specialized cells, such as brain and heart cells, for transplantation and cell-based therapies, they may provide an ultimate solution to limited donor availability.

In an earlier study, Li's lab genetically engineered heart cells derived from human ESCs, suggesting the possibility of transplanting unlimited supplies of healthy, specialized cells into damaged organs.

"We do not want to be taking any chances of tumor formation. Based on our previous research, we therefore decided to explore the existence of ion channels in pluripotent, or versatile, human ESCs because electrical activity is known to regulate cell differentiation and proliferation," says Li. "To my knowledge, the electrical properties of human ESCs were never studied up to this point."

In the current study, the researchers measured the electric currents of single human ESCs, discovered several channels that allow and control passage of potassium, and observed the electric current's effect on cell differentiation and proliferation.

"In a number of different cell types, from cancer to T-lymphocytes, potassium channels are responsible for altering the membrane voltage of cells," says Li. "This in turn is required for the progression of certain cells into the next phase of a cell cycle."

Li hopes the targeting of specific potassium channels will give scientists more understanding and control in engineering healthy cells for transplantation.

"We found that blocking potassium channels in ESCs also slowed their growth," says Li. "Our findings may lead to genetic strategies that suppress undesirable cell division after transplantation, not only for ESCs and their derivatives, but perhaps for adult stem cells as well." Li adds that much more work is necessary to know for sure.
-end-
The research was funded by the National Institutes of Health, the Blaustein Pain Research Center, the Croucher Foundation and the Hong Kong Research Grant Council.

Authors of the paper are Li, Tian Xue, Suk-Ying Tsang, Rika Van Huizen, Zhaohui Ye and Linzhao Cheng of Johns Hopkins; Kai Wang, Chun Wai Wong, Kevin W. Lai, Ka Wing Au, Janet Zhang, Gui-Rong Li, Chu-Pak Lau and Hung-Fat Tse of the University of Hong Kong.

On the web: http://stemcells.alphamedpress.org/papbyrecent.dtl

Johns Hopkins Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.