Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk

October 20, 2008

Johns Hopkins scientists were dubious in the early 1980s when they stumbled on small sugar molecules lurking in the centers of cells; not only were they not supposed to be there, but they certainly weren't supposed to be repeatedly attaching to and detaching from proteins, effectively switching them on and off. The conventional wisdom was that the job of turning proteins on and off -- and thus determining their actions -- fell to phosphates, in a common and easy-to-detect chemical step in which phosphates fasten to and unfasten from proteins; a process called phosphorylation.

Now, after decades of investigating the "new" sugar-based protein modification they discovered, the Johns Hopkins team admits that they themselves were surprised by their latest results. Published recently in the Proceedings of the National Academy of Sciences, their findings show that the surreptitious sugar switch is likely as influential and ubiquitous as its phosphate counterpart and, indeed, even plays a role in regulating phosphorylation itself.

More to the point, the work has implications for finding new treatments for a number of diseases such as diabetes, neurodegeneration and cancer, because the new switches form yet another potential target for manipulation by drugs.

"Like dark matter in the cosmos, it's hard to find even though it's very abundant," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine, referring to the sugar (O-GlcNAc, pronounced oh-GLICK-nac) that carries out GlcNAcylation.

For years, Hart's team thought of GlcNAcylation as phosphorylation's foil; a simple, classic case of either-or. New technologies involving molecular sleuthing with a mass spectrometer allowed them to measure the extent to which the addition of sugar to proteins affects phosphorylation.

Of 428 sites on which phosphate was being added to and taken off of proteins, all responded in some way to increased O-GlcNAc: 280 decreased phosphorylation and 148 increased phosphorylation.

"The influence of sugar is striking," Hart says. "The presence of O-GlcNAc causes the enzymes that add the phosphate to do something different, and this cross-talk itself can modify proteins."

Because both sugar and phosphate modifications are linked to how cells work, they are fundamental to understanding and eventual control of the molecular processes that underlie many diseases.

"With regard to cancer, diabetes and Alzheimer's," says Hart, "most people in the world today have been studying the yang (phosphorylation) but not the yin (GlcNAcylation). There's another whole side that people were unaware of where diabetes diagnostics and cancer therapies could be targeted."
-end-
The research was funded by the National Institutes of Health.

Authors on the paper are Zihao Wang, Marjan Gucek and Gerald W. Hart, all of Johns Hopkins.

On the Web:
http://biolchem.bs.jhmi.edu/members/facultydetail.asp?PersonID=679
http://www.pnas.org/

Johns Hopkins Medicine

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.