McMaster University unveils world's most advanced microscope

October 20, 2008

Hamilton, ON. Oct. 20, 2008 - The most advanced and powerful electron microscope on the planet--capable of unprecedented resolution--has been installed in the new Canadian Centre for Electron Microscopy at McMaster University.

"We are the first university in the world with a microscope of such a high calibre," says Gianluigi Botton, director of the Canadian Centre for Electron Microscopy, professor of Materials Science and Engineering, and the project's leader. "The resolution of the Titan 80-300 Cubed microscope is remarkable, the equivalent of the Hubble Telescope looking at the atomic level instead of at stars and galaxies. With this microscope we can now easily identify atoms, measure their chemical state and even probe the electrons that bind them together."

Because we are at the very limits of what physics allows us to see, --"even breathing close to a regular microscope could affect the quality of the results," says Botton--the new microscope is housed in a stable, specially designed facility able to withstand ultralow vibrations, low noise, and minute temperature fluctuations. Operation of the instrument will also be done from a separate room to ensure results of the highest quality.

Built in the Netherlands by the FEI Company at a cost of $15-million, the Titan cluster will examine at the nano level hundreds of everyday products in order to understand, manipulate and improve their efficiency, says John Preston, director of McMaster's Brockhouse Institute for Materials Research.

The microscope will be used to help produce more efficient lighting and better solar cells, study proteins and drug-delivery materials to target cancers. It will assess atmospheric particulates, and help create lighter and stronger automotive materials, more effective cosmetics, and higher density memory storage for faster electronic and telecommunication devices.

"The addition of the Titan 80-300 Cubed to the Centre's suite of microscopy instruments that include a Titan cryo-in situ solidifies Ontario's and Canada's lead in nanotechnology, and places us among the world's most advanced materials research institutions," says Mo Elbestawi, McMaster's vice-president, Research and International Affairs.
-end-
Funding for the microscope instrumentation was provided by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ministry of Research and Innovation of Ontario and the Ontario Ministry of Economic Development and Trade, through a partnership with FEI and McMaster University.

McMaster University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.