Scientists map soils on an extinct American volcano

October 20, 2008

MADISON, WI, October 20, 2008 | Union County New Mexico is a landscape of striking diversity. Out of expansive rangelands rise sporadic yet majestic cinder cone volcanoes and mesas preserved by basalt, part of the Raton-Clayton Volcanic Field. Capulin volcano, formed approximately 62,000 years ago, is the youngest volcano in the field. The cone rises 396 m from the plain, reaching an altitude of 2,495 m above sea level. The base of the volcano is 6.4 km in circumference, and the crater is 126 m deep and 442 m across. Four different flows of lava can be observed across the monument, indicative of different eruptive events. Conditions across the park are highly dynamic with respect to vegetation distribution, slope, and depth to bedrock, but the available soils data was highly generalized and lacked sufficient specificity to be of much use in park management of natural resources.

In 2006, Dr. David C. Weindorf, Assistant Professor of Soil Classification and Land Use at the LSU AgCenter in Baton Rouge, LA, visited the volcano with a group of undergraduate soil science students. As a result of the visit, the National Parks Service commissioned a more detailed study of soils in the park. The results are published in the Fall 2008 issue of Soil Survey Horizons ("High resolution soil survey of Capulin Volcano National Monument, New Mexico" by D. Weindorf, B. Rinard, Y. Zhu, S. Johnson, B. Haggard, J. McPherson, M. Dia, C. Spinks, and A. McWhirt, Soil Surv. Horiz. 49:55-62

The unprecedented access for sampling allowed for the collection of more than 140 soil samples, the description of five soil profiles (vertical cross sections of soil extending into the subsoil). At each site, global positioning system (GPS) coordinates were recorded so the exact location of the sample could be mapped. Slope and site characteristics such as vegetative cover were also noted at each point.

In the lab, soil color, texture, organic matter, pH, and other properties were carefully examined. When all datasets were complete, they were loaded into a computer program that creates interpolated maps between data collection points. In doing so, map layers were created of each data parameter. Finally, when all maps are simultaneously considered, the research team drew the boundaries of each unique soil.

An additional benefit of the study was the involvement of undergraduate students. Beatrix Haggard and Stephanie Johnson, two of the undergraduate students integrally involved in the study, stated "Research on Capulin has allowed us to apply our studies in a real-world research study and prepared us for graduate research in soil science." Both students have now begun graduate work at LSU.

Ongoing research at the LSU AgCenter is focusing on the validation of soils data and the use of new field portable technologies such as x-ray fluorescence (XRF) spectrometry and diffuse reflectance spectroscopy (DRS) in soil survey. Accurate soils information is vital not only to agriculture, but also civil engineering, environmental science, and other disciplines.
-end-
This featured article of SSH is available for free access at https://www.soils.org/soil_survey_horizons/pdf/featured-article-08-2.pdf until the next quarterly issue.

Soil Survey Horizons, https://www.soils.org/soil_survey_horizons/, is a medium for expressing ideas, problems, and philosophies concerning the study of soils in the field. Articles include research updates, soil news, history of soil survey, and personal essays from the lives of soil scientists. Soil Survey Horizons is published by the Soil Science Society of America.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Soil Science Society of America

Related Volcano Articles from Brightsurf:

Using a volcano's eruption 'memory' to forecast dangerous follow-on explosions
Stromboli, the 'lighthouse of the Mediterranean', is known for its low-energy but persistent explosive eruptions, behaviour that is known scientifically as Strombolian activity.

Rebirth of a volcano
Continued volcanic activity after the collapse of a volcano has not been documented in detail so far.

Optical seismometer survives "hellish" summit of Caribbean volcano
The heights of La Soufrière de Guadeloupe volcano can be hellish, sweltering at more than 48 degrees Celsius (120 degrees Fahrenheit) and swathed in billows of acidic gas.

Researchers reveal largest and hottest shield volcano on Earth
Researchers from the University of Hawai'i at Mānoa revealed the largest and hottest shield volcano on Earth--Pūhāhonu, a volcano within the Papahānaumokuākea Marine National Monument.

Formation of a huge underwater volcano offshore the Comoros
A submarine volcano was formed off the island of Mayotte in the Indian Ocean in 2018.

Volcano F is the origin of the floating stones
Since August a large accumulation of pumice has been drifting in the Southwest Pacific towards Australia.

Researchers discover a new, young volcano in the Pacific
Researchers from Tohoku University have discovered a new petit-spot volcano at the oldest section of the Pacific Plate.

What happens under the Yellowstone Volcano
A recent study by Bernhard Steinberger of the German GeoForschungsZentrum and colleagues in the USA helps to better understand the processes in the Earth's interior beneath the Yellowstone supervolcano.

Geoengineering versus a volcano
Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun's radiation back into space and cool the planet.

How to recognize where a volcano will erupt
Eleonora Rivalta and her team from the GFZ German Research Centre for Geosciences in Potsdam, together with colleagues from the University Roma Tre and the Vesuvius Observatory of the Italian Istituto Nazionale di Geofisica e Vulcanologia in Naples have devised a new method to forecast volcanic vent locations.

Read More: Volcano News and Volcano Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.