Caste in the colony

October 20, 2008

"The history of all past society has consisted in the development of class antagonisms...the exploitation of one part of society by the other". - Karl Marx and Frederick Engels, The Communist Manifesto.

Although diversity in social groups can increase group well being, it also may increase the potential for conflict. All societies are characterized by struggles for control: which individuals gain the spoils and which toil in the fields. In colonies of social insects this struggle is embodied by a reproductive division of labor. Some individuals (the queens) reproduce, while the workers provide the labor that maintains colony function. In many social insects queens enjoy nearly complete control over reproduction and workers have diversified in form and function to increase their efficiency at performing different labors.

How, then, is it determined which individuals, as developing larvae, becoming queens or different types of workers? A collaborative research team of scientists at four universities has found that caste determination in the Florida harvester ant is much more than meets the eye. Larvae become different castes (small workers, large workers, or new queens) based largely on the nutrition they receive. Those fed more insects than seeds are more likely to become larger individuals (queen>large worker>small worker). However, genetic differences also contribute and bias the larva's developmental pathway. Even once caste is determined, nutritional, social (colony size), and genetic factors all contribute, but in different ways, to how big an individual grows. "Caste determination in most social insects likely involves both nature and nurture, but most interestingly in this species, these two forces contribute differently in different castes," says lead researcher Chris R. Smith of the University of Illinois. Although genetic factors contribute to what caste an individual becomes, the environment of the larva is controlled by the workers. Quite generally, ant colonies are supreme examples of both conflict and cooperation - each extreme of the nature-nurture continuum.
-end-
"Caste determination in a polymorphic social insect: nutritional, social, and genetic factors" by C.R. Smith (University of Illinois Urbana-Champaign), K.E. Anderson (University of Arizona), C.V. Tillberg (Linfield College), J. Gadau (Arizona State University), and A.V. Suarez (University of Illinois Urbana-Champaign). American Naturalist (2008) 172:497-507 DOI: 10.1086/590961

University of Chicago Press Journals

Related Insects Articles from Brightsurf:

High temperatures threaten the survival of insects
Insects have difficulties handling the higher temperatures brought on by climate change, and might risk overheating.

Food allergy caused by insects?
Can edible insects trigger allergies? In September 2020, the BfR launched a new joint research project to protect consumers from potential allergic reactions: Allergen-Pro.

A robot to track and film flying insects
French scientists have developed the first cable-driven robot that can follow and interact with free-flying insects.

Dramatic loss of food plants for insects
Just a few weeks ago, everyone was talking about plummeting insect numbers.

The brains of shrimps and insects are more alike than we thought
Crustaceans share a brain structure known to be crucial for learning and memory in insects, a University of Arizona-led research team discovered.

Freshwater insects recover while spiders decline in UK
Many insects, mosses and lichens in the UK are bucking the trend of biodiversity loss, according to a comprehensive analysis of over 5,000 species led by UCL and the UK Centre for Ecology & Hydrology (UKCEH), and published in Nature Ecology & Evolution.

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Helpful insects and landscape changes
We might not notice them, but the crops farmers grow are protected by scores of tiny invertebrate bodyguards.

New information on tropical parasitoid insects revealed
The diversity and ecology of African parasitoid wasps was studied for over a year during a project run by the Biodiversity Unit of the University of Turku in Finland.

Read More: Insects News and Insects Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.