'Dry cleaning effect' explained by forgetful Yale researcher

October 20, 2008

Yale researchers have described how dueling brain systems may explain why you forget to drop off the dry cleaning and may point to ways that substance abusers and people with obsessive compulsive disorder can overcome bad habits.

In Proceedings of the National Academy of Sciences, Christopher J. Pittenger, M.D., and colleagues describe a sort of competition between areas of the brain involved in learning that results in what Pittenger calls the "dry cleaning effect."

One area of the brain called the striatum helps record cues or landmarks that lead to a familiar destination. It is the area of the commuter's brain that goes on autopilot and allows people to get to work, often with little memory of the trip.

But when driving to an unfamiliar place, the brain recruits a second area called the hippocampus, which is involved in a more flexible system called spatial learning. The commuter must employ this system if he or she wants to run an errand before work.

"When you have driven the same route many times and are doing it on autopilot, it can be really difficult to change," said Pittenger, assistant professor of psychiatry at Yale and senior author the paper. "This is why I cannot, for the life of me, remember to drop off my dry cleaning on the way to work. If I'm not paying enough attention right at that moment, if I am thinking about something else, I just sail right on by."

Pittenger and Yale colleagues Anni S. Lee and Ronald S. Duman developed a way to study how these two modes of learning might be interconnected in mice.

In one group, they disrupted areas of the striatum in mice and discovered that their ability to complete landmark navigation tasks was impaired. However, these mice actually improved on tasks that involved spatial learning.

Conversely, when the researchers disrupted an area of the hippocampus involved in spatial learning, the animals could no longer navigate spatially but learned landmark tasks more quickly.

Pittenger speculates that the interactions between these two systems may be important for understanding certain mental illnesses in which patients have destructive, habit-like patterns of behavior or thought. Obsessive-compulsive disorder, Tourette syndrome, and drug addiction involve abnormal function of the striatum and may also involve disruption of the interactions between the two learning systems, which may make habits stronger and less flexible.

"This is part of what we are doing in cognitive-behavioral therapy when we teach patients to recognize their destructive habits, to take a step back, and to learn to do things differently," Pittenger said. "What we're really asking them to do is to use one of these systems to overcome and, ultimately, to re-train the other."

In time, Pittenger hopes his studies will lead to more effective treatments for psychiatric disease - and, maybe, help him drop off his dry cleaning.
-end-
The research was funded by the National Institute of Health.

Citation: Proceedings of the National Academy of Sciences, Oct. 20, 2008

Yale University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.