Texas A&M researchers find new mechanism for circadian rhythm

October 20, 2009

Molecules that may hold the key to new ways to fight cancer and other diseases have been found to play an important role in regulating circadian rhythm, says Liheng Shi, a researcher in Texas A&M's Department of Veterinary Integrative Biosciences.

Circadian rhythm is the roughly 24-hour cycle of physiological activities of humans, animals and even bacteria, Shi explains.

He and colleagues have had their research, currently focusing on the circadian rhythm in chickens' eyes, published in the "Journal of Biological Chemistry." Chicken eyes have a lot in common with human eyes.

"The prefix 'photo-' in photoreceptors means light, and photoreceptors in animals' eyes receive light signals and then translate them into signals that their brain can understand, and that is how they see," he explains.

Shi notes there are two kinds of photoreceptors - cone photoreceptors and rod photoreceptors, named for the shape they resemble.

Some channels that scientists call L-VGCCs are important to the circadian rhythm in chickens' eyes. These channels are important because they are the pathways through which messages go in and out of photoreceptors, and these messages are crucial to the proper functioning of the eye.

A group of proteins (L-VGCCα1C) carries the messages in and out. At night, they get more work done than during the day to "prepare chickens' eyes for another day's busy work" and "tell various parts of the eye to adjust to the darkness," explains Shi, who holds a post-doctoral position under the mentorship of Gladys Ko, one of the coauthors of the article.

These proteins are controlled by messengers called mRNA, and they are especially active, raising the question of why, he says.

"There must be an explanation," Shi says, "and we found a possible answer."

The answer lies in a sibling of the messenger named microRNA-26a, a "small guy" in the RNA family.

"During the day, the 'naughty small guy' crawls onto the back of his brother mRNA, so his brother cannot concentrate on his work," the Texas A&M researcher explains. "At night, however, he lets his brother go, so his brother focuses on his work and gets more work done."

He advises not to "look down" on the mRNA. "If they quite their job, the chicken may become blind," Shi adds. "Besides regulating circadian rhythm, the microRNA family also influence cancer development, cell division, heart disease, and so on."

"What we know about microRNAs is probably only a tip of the iceberg," the Texas A&M postdoc says. "As we get to know more about them, these small guys may be able to help us diagnose and treat many diseases."
-end-
Contact: Liheng Shi at (979) 845-6853 or LShi@cvm.tamu.edu or Miao Jingang at miaojingang@tamu.edu

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

For more news about Texas A&M University, go to http://tamunews.tamu.edu.

Follow us on Twitter at http://www.twitter.com/aggielandnews.

Texas A&M University

Related Circadian Rhythm Articles from Brightsurf:

Circadian rhythms help guide waste from brain
New research details how the complex set of molecular and fluid dynamics that comprise the glymphatic system - the brain's unique process of waste removal - are synchronized with the master internal clock that regulates the sleep-wake cycle.

Understanding the circadian clocks of individual cells
Two new studies led by UT Southwestern scientists outline how individual cells maintain their internal clocks, driven both through heritable and random means.

Who is at risk of heart rhythm disorders?
Use the right tool for the job. Today experts outline the best way to identify people most likely to develop common and devastating heart rhythm disorders.

Our pupil moves to the rhythm of the environment
Regular processes in the environment improve our eyesight.

The discovery of new compounds for acting on the circadian clock
The research team comprised of Designated Associate Professor Tsuyoshi Hirota and Postdoctoral Fellows Simon Miller and Yoshiki Aikawa, of the Nagoya University Institute of Transformative Bio-Molecules, has succeeded in the discovery of novel compounds to lengthen the period of the circadian clock, and has shed light on their mechanisms of action.

Let there be 'circadian' light
Researchers publishing in Current Biology describe the science behind creating lighting to make us all happy and productive indoors.

Stress hormone helps control the circadian rhythm of brain cells
Researchers from the University of Copenhagen have shown how the brain's circadian rhythm in rats is, among other things, controlled by the stress hormone corticosterone -- in humans called cortisol.

What drives circadian rhythms at the poles?
Circadian clocks coordinate the organism to the alternating cycles of day and night.

The circadian-hypoxia link in cardioprotection
Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as circadian rhythm.

The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.

Read More: Circadian Rhythm News and Circadian Rhythm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.