CSIRO 'hot rods' old telescope

October 20, 2010

CSIRO has helped transform the University of Sydney's radio telescope into a world-class instrument, and along the way has learned lessons for its own ASKAP (Australian SKA Pathfinder) telescope.

Both telescopes will help demonstrate Australia's technological expertise in its bid to host the world's largest and most advanced radio telescope - the Square Kilometre Array (SKA).

The University of Sydney runs what was the Molonglo Observatory Synthesis Telescope (MOST) near Canberra. It contracted CSIRO to help develop signal-processing systems - a filterbank and correlator - to dramatically boost the telescope's performance.

The upgrade has made the telescope more flexible, three times more sensitive, with ten times more bandwidth [up from 3 MHz to 30 MHz], and able to make better-quality images of objects in space.

"This project has given our telescope a whole new capability," says Professor Anne Green of the University of Sydney, who led the process.

"It looks the same, but under the bonnet it's been born again."

And the "new" telescope has a new name: SKAMP (the Square Kilometre Array Molonglo Prototype).

The formal handover of the new signal-processing systems recently took place at the University of Sydney.

The knowledge CSIRO has gained during the course of this project has been applied to the design of the digital systems for its own ASKAP telescope, which is now under construction in Western Australia. Much of the SKAMP contract was carried out by the ASKAP Digital Systems team.

"What we've learned over several years will now allow us to dramatically shorten our design cycle for ASKAP's digital systems, as well as potentially feed into future development work that will be required for the SKA," says CSIRO SKA Director, Dr Brian Boyle.

Much of the funding for the SKAMP project was provided by the Commonwealth Government under the second round of the Major National Research Facilities program. The Australian Research Council has also contributed substantial funding.

In a synergy with the SKAMP project, CSIRO has built a similar correlator for the international Murchison Widefield Array (MWA) consortium, which is building a low-frequency radio telescope at the same site as the ASKAP telescope (the Murchison Radio-astronomy Observatory in Western Australia). MWA too will demonstrate technology for the SKA project.
-end-


CSIRO Australia

Related Radio Telescope Articles from Brightsurf:

Evolution of radio-resistance is more complicated than previously thought
Radio-resistance in bacteria first evolves through the adaptation of DNA repair mechanisms, however as evolution continues more mutations accumulate, and more cellular metabolic processes are affected.

A galaxy's stop-and-start young radio jets
VLBA image shows details of a young jet emitted from the core of an active galaxy, revealing that the jet activity stopped, then restarted only a decade ago.

Radio: The medium that is best dealing with the COVID-19 crisis
During lockdown, the Media Psychology Lab, directed by Emma Rodero, a lecturer with the UPF Department of Communication, has conducted a study on the listening habits, consumption, credibility and psychological impact of the radio in the COVID-19 crisis.

A fast radio burst tracked down to a nearby galaxy
Astronomers in Europe, working with members of Canada's CHIME Fast Radio Burst collaboration, have pinpointed the location of a repeating fast radio burst (FRB) first detected by the CHIME telescope in British Columbia in 2018.

Alternative material for superconducting radio-frequency cavity
In modern synchrotron sources and free-electron lasers, superconducting radio-frequency cavity resonators are able to supply electron bunches with extremely high energy.

Fast radio burst pinpointed to distant galaxy
In a rare feat, astronomers have pinpointed the place of origin of a fast radio burst, with a surprising outcome.

Radio telescope ALMA finds earliest example of merging galaxies
Researchers using ALMA observed signals of oxygen, carbon, and dust from a galaxy in the early Universe 13 billion years ago.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

Nature: When lightning strikes -- the LOFAR radio telescope is watching closely
It is still unclear what exactly happens when lightning develops.

Listening to quantum radio
Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics.

Read More: Radio Telescope News and Radio Telescope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.