New drug strategies for Alzheimer's, multiple sclerosis examined at UH

October 20, 2011

HOUSTON, Oct. 20, 2011 - Researchers at the University of Houston (UH) are recommending a new strategy for developing drugs to treat cancer, multiple sclerosis, Alzheimer's and cardiovascular diseases.

In an invited review published in the October issue of Nature Reviews Drug Discovery, scientists at the Center for Nuclear Receptors and Cell Signaling (CNRCS) at UH outline the results of years of research following the team's 1996 discovery of the estrogen receptor beta (ERβ).

"We have known for some time that female sex hormones - estrogens - influence a number of functions in the human body," said Dr. Jan-Åke Gustafsson, UH professor and CNRCS director. "Only recently have we and others found that one of the estrogen receptors - ERβ - is a potential target for the treatment of Alzheimer's and other chronic diseases."

Gustafsson is best known as a leading expert on estrogen receptors, being credited with the earlier discovery of ERβ during his tenure at the Karolinska Institutet in Stockholm, Sweden. In Houston since 2009, Gustafsson has hand-selected a team of experts to build on his initial breakthrough. For this latest review, the team was invited to share the most recent results of their research.

The two estrogen receptors, estrogen receptor alpha (ERα) and ERβ, have their effects on cells via activation by hormones circulating in the body. The influence of these receptors in the human body spans such diverse functions as fertility, metabolism, and the cardiovascular and nervous systems. Due to their expanded role in human health, these receptors represent an ideal target for drugs and therapeutic treatments.

Studies conducted following Gustafsson's discovery of ERβ have shown intriguing differences in tissue distribution and gene regulation when compared to the role of ERα. There has since been an intense effort in both academia and industry to develop ERβ-specific research tools and potential therapeutics for a multitude of conditions.

One successful example of using ERβ as a drug target has proven the receptor as an effective cancer cell combatant in breast cancer tissue. Closer examination of human breast cancer cell lines determined that, while ERα alone may stimulate the development of tumors, the combined presence of ERα and ERβ reduced and prevented tumor development.

"These modulators are well-established in the treatment of breast cancer and osteoporosis," Gustafsson said. "We now are pushing the limits of their influence to develop new treatments and ultimately save lives."

CNRCS researchers continue to examine the two estrogen receptor subtypes in various animal disease models, focused on identifying therapeutic opportunities. ERβ remains the most likely target for expanding treatments beyond breast cancer. The widespread involvement of ERβ presents the greatest probability for impacting these other diseases. Early results indicate that the selective activation of ERβ may represent a safe, disease-modifying therapy for the treatment of Alzheimer's disease.
-end-
Collaborators included Konrad F. Koehler and Stefan Nilsson of Karo Bio, a pharmaceutical company in Sweden. Gustafsson's research is funded by the Texas Emerging Technology Fund, the Robert A. Welch Foundation and the Cancer Prevention and Research Institute of Texas. An abstract is available online at http://www.nature.com/nrd/journal/v10/n10/abs/nrd3551.html, and the review is highlighted in the journal's "Patent Watch" column at http://www.nature.com/nrd/journal/v10/n10/full/nrd3574.html#Oestrogen-receptor-modulators. Editorial Note: High-resolution photos of Jan-Åke Gustafsson are available to media by contacting Lisa Merkl.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 38,500 students in the most ethnically and culturally diverse region in the country.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 181 ranked faculty and approximately 4,500 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

About the UH Center for Nuclear Receptors and Cell Signaling

Established in 2009, the University of Houston Center for Nuclear Receptors and Cell Signaling (CNRCS) is the centerpiece of the university's tier-one biomedical research initiative and member of the internationally renowned Texas Medical Center. Working from the center's state-of-the-art labs, CNRCS researchers combine interdisciplinary research with dynamic collaboration within the medical center and with industry partners, with the goal of finding new treatments for an array of significant diseases, including cancer, diabetes and metabolic syndrome. To learn more, visit http://cnrcs.uh.edu.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

University of Houston

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.