3-D printed facial prosthesis offers new hope for eye cancer patients following surgery

October 20, 2014

CHICAGO - Oct. 20, 2014 - Researchers have developed a fast and inexpensive way to make facial prostheses for eye cancer patients using facial scanning software and 3-D printing, according to findings released today at AAO 2014, the 118th annual meeting of the American Academy of Ophthalmology. Their novel process can create more affordable prosthetics for any patients who have hollow sockets resulting from eye surgery following cancer or congenital deformities.

In the United States, more than 2,700 new cases of eye cancer are diagnosed each year, according to the American Cancer Society, and the mortality rate is high for the disease. Some patients undergo a life-saving surgery known as exenteration that involves removing the contents of the eye socket and other tissue. The research team hopes to bring these patients relief by providing a more affordable facial prosthesis that will allow them to live their lives more fully and with less stigma.

Conventional facial prostheses can cost $10,000 to $15,000 and take weeks to produce. Each one is created by an ocularist, an artisan who makes a mold of the face, casts it using rubber and then adds the final touches such as skin color and individual eyelashes. Patients and their families often have to pay out-of-pocket for facial prostheses because health insurance oftentimes will not cover the cost.

University of Miami researchers developed a process to manufacture facial prostheses in a matter of hours at a fraction of the cost of a traditional prosthesis using topographical scanning and 3-D printing technology. Patients are scanned on the undamaged side of their face using a mobile scanner. The software then creates a mirror image. Along with a scan of the side of the face with the orbital defect, the program can mesh the two scans together to create a 3-D image of the face. The topographical information then goes to a 3-D printer, which translates the data into a mask formed out of injection-molded rubber suffused with colored pigments matching the patient's skin tone.

The project started as the brainchild of David Tse, M.D., professor of ophthalmology at the Bascom Palmer Eye Institute in Florida and the Nasser Ibrahim Al-Rashid chair in ophthalmic plastic, orbital surgery and oncology. Dr. Tse was treating a child with eye cancer who had both eyelids removed and underwent exenteration. The family could not afford an ocularist, so Dr. Tse raised donations to help pay for her first prosthesis. Now a teenager, she has grown out of the prosthesis and must instead wear an eye patch.

"Hopefully, using this quick and less expensive 3-D printing process, we can make an affordable facial prosthesis for her and also help thousands of other people like her who lack the resources to obtain one through an ocularist," said Dr. Tse.

Designed and developed in partnership with Dr. Tse and a team at the Composite Materials Lab at the University of Miami, the 3-D printed prosthesis possesses several advantages over the conventional type created by an ocularist. The material involves a proprietary mix of nanoparticles that provides extra reinforcement and makes it possible to match many shades of skin. Over time, conventional facial prostheses can discolor and fray at the edges, but nanoclay protects the material from breaking down and changing color when exposed to moisture and light. It also prevents dirt from depositing. If the prosthesis ever needs to be replaced, reproduction can happen with the press of a button.

"Once we have a patient scanned, we have the mold, so we can create a new prosthesis in no time," said Landon Grace, Ph.D., director of the lab and an assistant professor of mechanical and aerospace engineering. "Our long-term goal is to help patients anywhere in the world. We could get a mobile scan, download the data in Miami, print out the prosthesis and ship it back to the patient the next day."
-end-
Rapid and cost-effective orbital prosthesis fabrication via automated non-contact facial topography mapping and 3-D printing (PO467) was presented at AAO 2014, the 118th annual meeting of the American Academy of Ophthalmology in conjunction with the European Society of Ophthalmology, which is in session October 18-21 at McCormick Place in Chicago. More than 25,000 attendees and 620 companies from 123 countries gather each year to showcase the latest in ophthalmic education, research and technology. To learn more about the event Where All of Ophthalmology Meets, visit http://www.aao.org/2014.

More 3-D Printing Technology Research

Additional 3-D printing technology results will be presented at AAO 2014 by ophthalmologist David Myung, M.D., Ph.D., of the Byers Eye Institute at Stanford University. His work centers on a 3-D-printed lens adapter system that enables high quality images of the eye using smartphones, which may help increase access to more affordable eye care. The poster is titled "Design and Rapid Prototyping of a Novel 3-D Printed Smartphone Lens Adapter System" (PO328).

Note to Editors: Media are invited to attend a news briefing on this research on Monday, Oct. 20 from 11:15 a.m. to 12:15 p.m. CDT in McCormick Place N426A. Media registration is required and can be completed at http://www.aao.org/newsroom/media_reg.cfm.

About the American Academy of Ophthalmology

The American Academy of Ophthalmology, headquartered in San Francisco, is the world's largest association of eye physicians and surgeons, serving more than 32,000 members worldwide. The Academy's mission is to advance the lifelong learning and professional interests of ophthalmologists to ensure that the public can obtain the best possible eye care. For more information, visit http://www.aao.org.

The Academy is also a leading provider of eye care information to the public. The Academy's EyeSmart® program educates the public about the importance of eye health and empowers them to preserve healthy vision. EyeSmart provides the most trusted and medically accurate information about eye diseases, conditions and injuries. OjosSanos™ is the Spanish-language version of the program. Visit http://www.geteyesmart.org or http://www.ojossanos.org to learn more.

American Academy of Ophthalmology

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.