Fish tale: New study evaluates antibiotic content in farm-raised fish

October 20, 2014

Antibiotics--one of modernity's great success stories--are charms that come with a curse. Their overuse in human and animal populations can lead to the development of resistant microbial strains, posing a dire threat to global health.

In a new study, Hansa Done, PhD candidate, and Rolf Halden, PhD, researchers at Arizona State University's Biodesign Institute, examine antibiotic use in the rapidly expanding world of global aquaculture.

Done and Halden measured the presence of antibiotics in shrimp, salmon, catfish, trout, tilapia and swai, originating from 11 countries. Data showed traces of 5 of the 47 antibiotics evaluated.

The research findings and a discussion of their implications appear in the current issue of the Journal of Hazardous Materials.

Charting resistance

The menace of germs bearing resistance to our best medical defenses is reaching crisis proportions. Each year, resistant microbes sicken some 2 million people in the U.S. alone and kill about 23, 000, according to the Infectious Diseases Society of America.

On September 18, President Obama proposed the first governmental steps to address the problem, establishing a task force to be co-chaired by the secretaries of Health and Human Services, the Department of Defense, and the Department of Agriculture.

The new initiative to reign in antibiotic overuse has been welcomed in the medical community, though many believe that much more needs to be done to safeguard society. The chief complaint is that the proposed measures largely ignore the largest consumers of antibiotics--animals farmed for human consumption, including fish.

"The threat of living in a post-antibiotic era cannot be avoided without revising current practices in the use of antibiotics in animal husbandry, including in aquaculture," says Halden.

Halden, who directs the Biodesign Institute's Center for Environmental Security, is a leading authority on the human and environmental impact of chemicals, (particularly their fate once their useful life has ended). In previous research, he has explored the intricate pathways from production to postconsumption fate of antimicrobials and the risks posed.

The new study examines the persistence of antibiotics in seafood raised by modern aquaculture. The research area is largely unexplored, as the primary focus of studies of antibiotics has been on drugs used in human medicine. The current research is the first to evaluate previously unmonitored antibiotics; it represents the largest reconnaissance conducted to date on antibiotics present in seafood.

Farming lifestyle

Aquaculture has undergone rapid growth to meet the burgeoning global demand, nearly tripling over the past 20 years to an estimated 83 million metric tons in 2013. The large increase has led to widespread antibiotic use, applied both to prevent and treat pathogens known to infect fish. The broad effects on health and the environment associated with these practices remain speculative.

Several natural mechanisms exist to help pathogenic microbes evade immune responses or develop drug resistance over time. The overuse of antibiotics, whether for human ingestion in hospitals or for agricultural or aquacultural use, can seriously exacerbate this problem, enriching microbes that bear particular genetic mutations, rendering them antibiotic resistant. In a biological arms race, antibiotics applied to combat disease run the risk of producing multi-drug resistant organisms that are increasingly difficult to kill.

In the new study, 27 seafood samples were examined for the presence of antibiotics. The samples represent five of the top 10 most consumed seafood varieties in the U.S.: shrimp, tilapia, catfish, swai, and Atlantic salmon. The National Oceanic and Atmospheric Administration (NOAA) acquired the samples from stores in Arizona and California.

Five antibiotics were present in detectable amounts: oxytetracycline in wild shrimp, farmed tilapia, farmed salmon and farmed trout; 4-epioxytetracycline in farmed salmon, sulfadimethoxine in farmed shrimp, ormetoprim in farmed salmon, and virginiamycin in farmed salmon that had been marketed as antibiotic-free.

Oxytetracycline, the most commonly used antibiotic in aquaculture, was the most prevalent in the study samples. Surprisingly, the study also detected this antibiotic in wild-caught shrimp imported from Mexico, which the authors suggest may be due to mislabeling, coastal pollution from sewage contamination, or cross-contamination during handling and processing.

On the bright side, all seafood analyzed was found to be in compliance with U.S. FDA regulations; however, the authors note that sub-regulatory antibiotic levels can promote resistance development, according to their extensive meta-analysis of existing literature. (Publications linking aquaculture with antibiotic resistance have increased more than 8-fold from 1991-2013.)

Antibiotics also have the potential to affect the animals themselves, producing alterations in how genes are turned on or off and physiological anomalies. (The latter may include malformations of the spine in trout exposed to the antibiotic oxytetracycline, though more work will be needed to clarify this association.)

Proper monitoring of antibiotic residues in seafood is particularly critical, due to the fact that many antibiotics used in aquaculture are also used in human medicine, for example amoxicillin and ampicillin--common therapeutics for the treatment of bacterial infections, including pneumonia and gastroenteritis.

The future of fish

The use of antibiotics in aquaculture can produce a variety of unintended consequences in addition to antibiotic resistance, including antibiotic dissemination into the surrounding environment, residual concentrations remaining in seafood, and high antibiotic exposure for personnel working in aquaculture facilities.

Changes in aquaculture are needed to ensure the practice can be carried out on a large scale in a sustainable manner. Currently, massive aquaculture operations threaten the health of seas, due to large volumes of fish waste emitted, containing excess nutrients, large amounts of pathogens, and drug resistance genes.

Additionally, many types of farmed fish rely on fishmeal produced from by-catch caught in fishing nets. Several pounds of fishmeal are often required to raise a single pound of farmed fish, thereby contributing to the overfishing of the seas and depletion of ocean diversity.

The current study offers a warning that antibiotics present at levels well below regulatory limits can still promote the development of drug-resistant microorganisms. The dramatic increase in resistant and multi-drug resistant bacterial strains documented over the past three decades indicates that much more thorough monitoring of seafood supplies is needed and a better scientific understanding of the nexus of global aquaculture, antibiotic use, drug resistance emergence, and regulatory measures.
-end-


Arizona State University

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.