Tarantula toxin is used to report on electrical activity in live cells

October 20, 2014

WOODS HOLE, Mass.--A novel probe that reports on the electrical activity of cells, made by fusing tarantula toxin with a fluorescent compound, is described in a paper today by scientists from the University of California, Davis; the Neurobiology course at the Marine Biological Laboratory (MBL); and Lawrence Berkeley National Laboratory.

The lead authors of the paper are Drew C. Tilley of UC-Davis and the late Kenneth Eum, a Ph.D. candidate at UC-Davis and teaching assistant in the MBL Neurobiology course.

The probe takes advantage of the potent ability of tarantula toxin to bind to electrically active cells, such as neurons, while the cells are in a resting state. The team discovered that a trace amount of toxin combined with a fluorescent compound would bind to a specific subset of voltage-activated proteins (Kv2-type potassium ion channels) in live cells. The probe lights up cell surfaces with this ion channel, and the fluorescent signal dims when the channel is activated by electrical signals.

This is the first time that researchers have been able to visually observe these ion channels "turning on" without first genetically modifying them. All that is required is a means to detect probe location, suggesting that related probes could potentially one day be used to map neural activity in the human brain.

"This is a demonstration, a prototype probe. But the promise is that we could use it to measure the activity state of the electrical system in an organism that has not been genetically compromised," says senior author Jon Sack, an assistant professor in the departments of Physiology and Membrane Biology at UC-Davis. Sack is a faculty member in the MBL Neurobiology course.

Since the probe binds selectively to one of the many different kinds of ion channels, it can help scientists disentangle the function of those specific channels in neuronal signaling. This can, in turn, lead to the identification of drug targets for neurological diseases and disorders.

"We have an incredible diversity of ion channels, and even of voltage-activated ion channels. The real trouble has been determining which ones perform which roles. Which ones turn on and when in normal nervous system functioning? Which are involved in abnormal states or syndromes?" Sack says. "The dream is to be able to see what the different types of ion channels are doing and when, to understand what they contribute to physiology and pathophysiology."

Tilley DC, Eum KS, Fletcher-Taylor S, Austin DC, Dupré C, Patrón LA, Garcia RL, Yarov-Yarovoy V, Cohen BE, and Sack JT (2014) Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. PNAS doi: http://www.pnas.org/cgi/doi/10.1073/pnas.1406876111.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Marine Biological Laboratory

Related Ion Channels Articles from Brightsurf:

Watch how cells squeeze through channels
Observations of cells moving through small channels shed new light on cell migration in 3D environments, researchers report October 6 in Biophysical Journal.

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Deep channels link ocean to Antarctic glacier
Newly discovered deep seabed channels beneath Thwaites Glacier in West Antarctica may be the pathway for warm ocean water to melt the underside of the ice.

NIST's SAMURAI measures 5G communications channels precisely
Engineers at the National Institute of Standards and Technology (NIST) have developed a flexible, portable measurement system to support design and repeatable laboratory testing of fifth-generation (5G) wireless communications devices with unprecedented accuracy across a wide range of signal frequencies and scenarios.

A new role for a tiny linker in transmembrane ion channels
In a study of large-conductance potassium (BK) channela, Jianhan Chen and colleagues UMass Amherst and Washington University report in eLife that their experiments have revealed 'the first direct example of how non-specific membrane interactions of a covalent linker can regulate the activation of a biological ion channel.'

June's SLAS discovery features the special collection, 'ion channels and relevant drug screening approaches'
In this issue, Guest Editor Veli-Pekka Jaakola, Ph.D., (Confo Therapeutics, Belgium) highlights a series of articles focused on new screening tools and assays that find new chemical matter for medically relevant membrane protein targets

How blood cells deform, recover when traveling through tiny channels
In this week's Biomicrofluidics, a method to characterize the shape recovery of healthy human RBCs flowing through a microfluidic constricted channel is reported.

Ball-and-chain inactivation of ion channels visualized by cryo-electron microscopy
Ion channels, which allow potassium and sodium ions to flow in and out of cells, are crucial in neuronal 'firing' in the central nervous system and for brain and heart function.

Discovery of bacterial ancestor yields new insight on calcium channels
The discovery of a calcium channel that is likely a 'missing link' in the evolution of mammalian calcium channels has been reported today in the open-access journal eLife.

Calcium channels play a key role in the development of diabetes
Researchers at Karolinska Institutet in Sweden have deciphered the diabetogenic role of a certain type of calcium channel in insulin-secreting beta cells.

Read More: Ion Channels News and Ion Channels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.