NASA's MAVEN studies passing comet and its effects

October 20, 2014

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

The MAVEN spacecraft -- full name Mars Atmosphere and Volatile Evolution -- reported back to Earth in good health after about three hours of precautions against a possible collision with high-velocity dust particles released by comet C/2013 A1 Siding Spring.

"We're glad the spacecraft came through, we're excited to complete our observations of how the comet affects Mars, and we're eager to get to our primary science phase," said MAVEN Principal Investigator Bruce Jakosky of the University of Colorado, Boulder.

MAVEN began orbiting Mars on Sept. 21. The opportunity to study this rare near-miss of a planet by a comet comes during the project's commissioning phase. A few weeks of instrument calibration and orbit fine-tuning remain before the start of the primary science phase. The mission will study the upper atmosphere of Mars and its interaction with the solar wind.

Comet Siding Spring hurtled past Mars today at about 125,000 mph (56 kilometers per second), coming within about 87,000 miles (139,500 kilometers) of the planet. That is equivalent to about one-third of the distance between Earth and Earth's moon. The closest approach by the comet's nucleus came at about 11:27 a.m. PDT (2:27 p.m. EDT). The period when dust from the comet was most likely to reach Mars and the orbits of spacecraft around Mars peaked about 100 minutes later.

From about 10:45 a.m. to 2 p.m. PDT (1:45 p.m. to 5:00 p.m. EDT) MAVEN kept in a defensive posture to reduce its profile relative to the direction from which the comet's high-velocity dust particles would come. In that "hunkered down" orientation, its main antenna was not facing the right way for transmitting to Earth, so communications were maintained at low data rate via a secondary antenna. Also, the mission performed a maneuver on Oct. 2 that set its orbit timing so that the spacecraft was behind Mars, relative to the possible dust flow, from about 12:53 p.m. to 1:23 p.m. PDT (3:53 p.m. to 4:23 p.m. EDT).

Downlink of data has begun from MAVEN observations of the comet and Mars' atmosphere. Some observations are designed to provide information about the composition of the gases and dust being released by the comet. Others are investigating possible interaction between material from the comet and the atmosphere of Mars.

Three NASA Mars orbiters, two Mars rovers and other assets on Earth and in space are studying comet Siding Spring. This comet is making its first visit this close to the sun from the outer solar system's Oort Cloud, so the concerted campaign of observations may yield fresh clues to our solar system's earliest days more than 4 billion years ago.

MAVEN's principal investigator is based at the University of Colorado's Laboratory for Atmospheric and Space Physics. The university provided two science instruments and leads science operations, as well as education and public outreach, for the mission. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN project and provided two science instruments for the mission. Lockheed Martin built the spacecraft and is responsible for mission operations. The University of California at Berkeley's Space Sciences Laboratory also provided four science instruments for the mission. NASA's Jet Propulsion Laboratory in Pasadena, California, provides navigation and Deep Space Network support, as well as the Electra telecommunications relay hardware and operations.
For more about MAVEN, visit:

NASA/Goddard Space Flight Center

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to