Nav: Home

Turning biofuel waste into wealth in a single step

October 20, 2016

Lignin is a bulky chain of molecules found in wood and is usually discarded during biofuel production. But in a new method by EPFL chemists, the simple addition of formaldehyde could turn it into the main focus.

Reducing our reliance on fossil fuels means turning to plant-derived biofuels and chemicals. But producing them cost-effectively from plants and other organic matter - collectively referred to as biomass - is a major engineering challenge. Most biomass comes in the form of non-edible plants like trees, grass, and algae, which contain sugars that can be fermented to produce fuel. But biomass also contains lignin, a bulky, complex organic polymer that fills wood, bark, and generally gives plants rigidity. Because it is difficult to process, lignin is usually discarded during biofuel processing. EPFL scientists have now turned lignin from a nuisance to an important source of biofuel by simply adding a common chemical, converting up to 80% of it into valuable molecules for biofuel and plastics. The patent-pending method, which can be scaled up to industrial levels, is published in Science.

Complex, but energy-dense

Lignin is an enormously complex biopolymer, filling the hard wall that surrounds each plant cell. In fact, lignin makes up almost a third of plant biomass, and its molecular structure gives it an energy density 30% greater than that of the sugars that are traditionally processed into biofuel. The problem is that lignin is difficult to extract and transform. Due to its instability, lignin usually rapidly gets destroyed during its extraction and most researchers have failed to efficiently break it apart for upgrade into fuels or chemicals.

Now, an international team of researchers led by Jeremy Luterbacher at EPFL, has shown that they can easily break lignin apart simply by adding the chemical formaldehyde to the process. Formaldehyde is one of the most widely used chemicals in industry, and it is simple and cheap to produce. The researchers found that formaldehyde stabilizes lignin and prevents it from degrading, leading to high yields of building blocks that can be used to make substitutes for petrochemicals. These yields were 3-7 times higher than those obtained from lignin without formaldehyde.

Scaling up

"Depending on the wood used we get between 50 and 80%," says Jeremy Luterbacher, who became known in 2014 for developing a method for extracting sugars from plants safely and cheaply (also published in Science). "The chemistry is relatively straightforward; the real challenge is actually finding investors for a pilot facility to demonstrate this." The market, he says, is difficult for sustainable energy largely because of inconsistent political support and widely varying energy prices. Investors for such innovative platforms are hard to come by in an uncertain market, especially considering the competition of well-established fossil fuels.

"The technology looks really good," says Luterbacher. "If the global political establishment sent a consistent message about moving away from fossil fuels, then investors would take notice. But I think Switzerland is a great place to get started. The Swiss have been unwavering supporters of clean energy and could help demonstrate new technologies, and so I'm quite optimistic about the future."
-end-
This work involved a collaboration of EPFL's Institute of Chemical Engineering (ISIC) with the University of Wisconsin-Madison, the US Department of Energy, and Purdue University. It was funded by the Swiss Competence Center for Energy Research (Biomass for a Swiss Energy Future), the Swiss National Science Foundation, EPFL, the US Department of Energy (Great Lakes Bioenergy Research Center; Center for Direct Catalytic Conversion of Biomass to Biofuels. EPFL has submitted a patent application based on this work.

Reference

Li Shuai, Masoud Talebi Amiri, Ydna M. Questell-Santiago, Florent Héroguel, Yanding Li, Hoon Kim, Richard Meilan, Clint Chapple, John Ralph, Jeremy S. Luterbacher. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 21 October 2016. DOI: 10.1126/science.aaf7810.

Ecole Polytechnique Fédérale de Lausanne

Related Biofuel Articles:

Corn better used as food than biofuel, study finds
Corn is grown not only for food, it is also an important renewable energy source.
Researchers produce biofuel for conventional diesel engines
In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel.
Insight into enzyme's 3-D structure could cut biofuel costs
Using neutron crystallography, a Los Alamos research team has mapped the three-dimensional structure of a protein that breaks down polysaccharides, such as the fibrous cellulose of grasses and woody plants, a finding that could help bring down the cost of creating biofuels.
Turning chicken poop and weeds into biofuel
Chicken is a favorite, inexpensive meat across the globe. But the bird's popularity results in a lot of waste that can pollute soil and water.
Turning biofuel waste into wealth in a single step
Lignin is a bulky chain of molecules found in wood and is usually discarded during biofuel production.
Biofuel production technique could reduce cost, antibiotics use
A new technique from MIT gives biofuel-producing microbes the upper hand against unwanted invaders.
Biological wizardry ferments carbon monoxide into biofuel
Cornell University biological engineers have deciphered the cellular strategy to make the biofuel ethanol, using an anaerobic microbe feeding on carbon monoxide -- a common industrial waste gas.
Chemistry lessons from bacteria may improve biofuel production
A new UW-Madison analysis of a group of bacteria called Streptomyces reveals the way some strains of the microbe developed advanced abilities to tear up cellulose, and points out more efficient ways we might mimic those abilities to make fuel from otherwise unusable plant material.
Weed stems ripe for biofuel
A weedy plant found on the roadside in northern Australia has stems ripe for biofuel production.
Turning human waste into next generation biofuel
Researchers affiliated with Ulsan National Institute of Science and Technology have found a new way to convert human waste into renewable energy sources.

Related Biofuel Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".