Nav: Home

Smashing metallic cubes toughens them up

October 20, 2016

HOUSTON - (Oct. 20, 2016) - Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.

The Rice team reported in Science this week that firing a tiny, nearly perfect cube of silver onto a hard target turns its single-crystal microstructure into a gradient-nano-grained (GNG) structure.

The purpose of the experiment was to learn how materials deform under overwhelming stress, as might be experienced by a bulletproof vest or a spacecraft that encounters micrometeorites. The researchers believe creating a gradient nanostructure in materials by way of deformation will make them more ductile and therefore less likely to fail catastrophically when subsequently stressed.

Ultimately, they want to develop nano-grained metals that are tougher and stronger than anything available today.

Led by materials scientist Edwin Thomas, the William and Stephanie Sick Dean of Rice's George R. Brown School of Engineering, the team used its advanced laser-induced projectile impact test (LIPIT) rig to shoot microcubes onto a silicon target. The mechanism allowed them to be sure the cube hit the target squarely.

The Thomas lab developed the LIPIT technique several years ago to fire microbullets to test the strength of polymer and graphene film materials. This time the researchers were essentially testing the bullet itself.

"The high-velocity impact generates very high pressure that far exceeds the material's strength," Thomas said. "This leads to high plasticity at the impact side of the cube while the top region retains its initial structure, ultimately creating a grain-size gradient along its height."

The original projectiles needed to be as perfect as possible. That required a custom fabrication method, Thomas said. The cubes for the study were synthesized as single crystals via bottom-up seed growth to about 1.4 microns per side, about 50 times smaller than the width of a human hair.

LIPIT transformed laser power into the mechanical energy that propelled the cubes toward a target at supersonic velocity. The cubes were placed on top of a thin polymer film that thermally isolated them and prevented the laser itself from deforming them. When a laser pulse hit an absorbing thin-film gold layer underneath the polymer, the laser energy caused it to vaporize. That expanded the polymer film, which launched the microcubes.

The distance covered was small -- about 500 micrometers -- but the effect was large. While the experiments were carried out at room temperature, the cube's temperature rose by about 350 degrees Fahrenheit upon impact at 400 meters per second and allowed dynamic recrystallization.

The team fired silver cubes at the target at various orientations and measured the results of the impact from every angle, inside and out and from the nanoscale on up. Controlling the orientation of the crystal's impact gave them enormous ability to control the resulting structure and potentially its mechanical properties, Thomas said.

Other industrial processes produce materials with grains that can range from the nanocrystalline up to the coarse-grained, and, Thomas said, neither structure is ideal. While nanocrystalline structures make metals stronger, they also increase their susceptibility to catastrophic brittle failure due to the way those grains localize strain. Studies have demonstrated that creating a gradient-nano-grained structure from the nanometer to the micron scale may provide high strength yet alleviate such brittle failures by better distribution of stress.

The one-step Rice process makes such structures with a range of grains from about 10 to 500 nanometers over a distance of 500 nanometers. That produces a gradient at least 10 times higher than the other techniques, the researchers reported.

They also discovered the impact stores considerable elastic energy in the material, which leads to slow but continuous recrystallization of the metal at room temperature, even though silver's melting point is more than 1,700 degrees Fahrenheit. Electron microscope analysis of samples eight days after impact showed the crystals were still seeking equilibrium, Thomas said.

In addition to promising pathways for creating ultrastrong and tough metals, the researchers believe their work may influence such other modern material processing techniques as cold spray and shot peening.
-end-
Rice postdoctoral researcher Ramathasan Thevamaran is lead author of the paper. Co-authors are Rice graduate student Olawale Lawal and research scientist Sadegh Yazdi and Rice alumni Seog-Jin Jeon, a postdoctoral researcher, and Jae-Hwang Lee, an assistant professor of mechanical and industrial engineering, both at the University of Massachusetts, Amherst.

Read the abstract at

http://science.sciencemag.org/cgi/doi/10.1126/science.aag1768

This news release can be found online at http://news.rice.edu/2016/10/20/smashing-metallic-cubes-toughens-them-up/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Videos:

https://youtu.be/yD8LEcc4hyA

https://youtu.be/arVIs6xQaxE

SEM/TEM video images: Thevamaran et al., SCIENCE 352:312 (21 OCT 2016). Reprinted with permission from AAAS

Related materials:

Thomas Research Group: http://elt.rice.edu

George R. Brown School of Engineering: http://engr.rice.edu

Images for download:

http://news.rice.edu/files/2016/10/1024_CUBE-6-WEB-1onmlke.jpg

Rice University researchers (from left) Olawale Lawal, Ramathasan Thevamaran, Edwin Thomas and Sadegh Yazdi hold clay models of deformed cubes that represent the results of their microscale experiments. The researchers smashed silver microcubes at near supersonic speeds to see how deforming their crystalline structures could make them stronger and tougher. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/10/1024_CUBE-7-WEB-1u0xyr3.jpg

Microscopic silver cubes were the bullets in Rice University experiments to show how deformation upon impact can make materials stronger and tougher. (Credit: Thomas Group/Rice University)

http://news.rice.edu/files/2016/10/1024_CUBE-8-WEB-191vvnq.jpg

A cross-section composite image of a silver microcube impacted on its side shows decreasing grain size closer to where the deformed cube hit the target. Rice University scientists believe their research will lead to better materials for high-impact applications. (Credit: Thomas Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Editor's note: Links to an animation, a video and high-resolution images for download appear at the end of this release.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Rice Articles:

High-protein rice brings value, nutrition
A new advanced line of rice, with higher yield, is ready for final field testing prior to release.
Rice plants engineered to be better at photosynthesis make more rice
A new bioengineering approach for boosting photosynthesis in rice plants could increase grain yield by up to 27 percent, according to a study publishing January 10, 2019 in the journal Molecular Plant.
Can rice filter water from ag fields?
While it's an important part of our diets, new research shows that rice plants can be used in a different way, too: to clean runoff from farms before it gets into rivers, lakes, and streams.
Rice plants evolve to adapt to flooding
Although water is essential for plant growth, excessive amounts can waterlog and kill a plant.
Breeding better Brazilian rice
Rice production in Brazil is a multi-billion-dollar industry. It employs hundreds of thousands of people, directly and indirectly.
More Rice News and Rice Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...