Nav: Home

Move over, solar: The next big renewable energy source could be at our feet

October 20, 2016

MADISON, Wis. -- Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike.

Now, however, flooring could be even more "green," thanks to an inexpensive, simple method developed by University of Wisconsin-Madison materials engineers that allows them to convert footsteps into usable electricity.

Xudong Wang, an associate professor of materials science and engineering at UW-Madison, his graduate student Chunhua Yao, and their collaborators published details of the advance Sept. 24 in the journal Nano Energy.

The method puts to good use a common waste material: wood pulp. The pulp, which is already a common component of flooring, is partly made of cellulose nanofibers. They're tiny fibers that, when chemically treated, produce an electrical charge when they come into contact with untreated nanofibers.

When the nanofibers are embedded within flooring, they're able to produce electricity that can be harnessed to power lights or charge batteries. And because wood pulp is a cheap, abundant and renewable waste product of several industries, flooring that incorporates the new technology could be as affordable as conventional materials.

While there are existing similar materials for harnessing footstep energy, they're costly, nonrecyclable, and impractical at a large scale.

Wang's research centers around using vibration to generate electricity. For years, he has been testing different materials in an effort to maximize the merits of a technology called a triboelectric nanogenerator (TENG). Triboelectricity is the same phenomenon that produces static electricity on clothing. Chemically treated cellulose nanofibers are a simple, low-cost and effective alternative for harnessing this broadly existing mechanical energy source, Wang says.

The UW-Madison team's advance is the latest in a green energy research field called "roadside energy harvesting" that could, in some settings, rival solar power -- and it doesn't depend on fair weather. Researchers like Wang who study roadside energy harvesting methods see the ground as holding great renewable energy potential well beyond its limited fossil fuel reserves.

"Roadside energy harvesting requires thinking about the places where there is abundant energy we could be harvesting," Wang says. "We've been working a lot on harvesting energy from human activities. One way is to build something to put on people, and another way is to build something that has constant access to people. The ground is the most-used place."

Heavy traffic floors in hallways and places like stadiums and malls that incorporate the technology could produce significant amounts of energy, Wang says. Each functional portion inside such flooring has two differently charged materials -- including the cellulose nanofibers, and would be a millimeter or less thick. The floor could include several layers of the functional unit for higher energy output.

"So once we put these two materials together, electrons move from one to another based on their different electron affinity," Wang says.

The electron transfer creates a charge imbalance that naturally wants to right itself but as the electrons return, they pass through an external circuit. The energy that process creates is the end result of TENGs.

Wang says the TENG technology could be easily incorporated into all kinds of flooring once it's ready for the market. Wang is now optimizing the technology, and he hopes to build an educational prototype in a high-profile spot on the UW-Madison campus where he can demonstrate the concept. He already knows it would be cheap and durable.

"Our initial test in our lab shows that it works for millions of cycles without any problem," Wang says. "We haven't converted those numbers into year of life for a floor yet, but I think with appropriate design it can definitely outlast the floor itself."

The Wisconsin Alumni Research Foundation holds the patent to the technology. Other authors on the paper include Zhiyong Cai of the Forest Products Laboratory and UW-Madison graduate students Alberto Hernandez and Yanhao Yu. The Forest Products Laboratory and National Science Foundation provided funding for the research. A link to the paper can be found at: http://www.sciencedirect.com/science/article/pii/S2211285516304086.
-end-
--Will Cushman, perspective@engr.wisc.edu

CONTACT: Xudong Wang, (608) 890-2667, xudong.wang@wisc.edu

DOWNLOAD PHOTO: https://uwmadison.box.com/v/floor-power

University of Wisconsin-Madison

Related Technology Articles:

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.
April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.