Nav: Home

Swansea University's physicists develop a new quantum simulation protocol

October 20, 2017

A step closer to understanding quantum mechanics: Swansea University's Physicists develop a new quantum simulation protocol

For most everyday experiences, such as riding a bicycle, using a lift or catching a ball, classical (Newtonian) mechanics is perfectly accurate.

However, at atomic and subatomic scales Nature is described by quantum mechanics, formulated around 100 years ago and famously characterised by theoretical physicist Richard Feynman when he said: "I think I can safely say that nobody understands quantum mechanics".

Even today understanding the dynamics of quantum-mechanical systems composed of a large number of interacting particles remains one of the most difficult problems in physics.

To address this challenge, an interdisciplinary research collaboration of quantum information theorists from Swansea University's Physics Department has developed a new quantum simulation protocol.

In their theory study, published in Physical Review X, high-energy physicist Professor Gert Aarts together with Dr Markus Müller and Alejandro Bermudez propose to use cold atoms as controllable quantum sensors to experimentally access key properties of interacting quantum field theories. The results could elucidate difficult, open questions in condensed matter and high-energy physics.

Quantum field theory provides a unifying language that describes a wide variety of systems in nature across many energy scales, ranging from ultra-cold atoms in the laboratory to the most energetic particles at the Large Hadron Collider.

Alejandro Bermudez said: "A cornerstone of quantum field theory is the so-called generating functional, from which all correlations between particles can be derived." Professor Aarts added: "Usually this is considered as a mathematical tool that neatly compresses all the relevant information about the quantum field theory into a single, somewhat abstract, quantity."

In this work, the team shows how the generating functional can in fact be measured in the lab, using strings of trapped laser-cooled ions.

The key idea of the new scheme is to map the information about the generating functional onto a collection of entangled quantum sensors, encoded in electronic states of the ions.

"These quantum sensors are then coupled by a sequence of precisely-timed pulses to the quantum field, pretty much like the keys of a piano, which must be pressed at different times to produce a melody", explains Müller. "This melody - corresponding to the experimental interferometric measurement signal - contains the relevant information about the quantum field theory of interest."

The results constitute an important step in the broader topic of quantum simulations, which aim to understand problems in quantum many-body physics by means of experimental systems that can be manipulated accurately to represent the quantum field theory under investigation.
Publication: Quantum sensors for the generating functional of interacting quantum field theories. A. Bermudez, G. Aarts, and M. Müller. Physical Review X 7, 041012 (2017)

Swansea University

Related Quantum Mechanics Articles:

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
Understanding mechanics and materials though evolution and biomaterials
Studying the evolution of bodily processes millions of years ago as well as the properties of today's biomaterials could improve soft robotics design and inform materials science research.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
Artificial intelligence algorithm can learn the laws of quantum mechanics
Artificial intelligence can be used to predict molecular wave functions and the electronic properties of molecules.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Bridge between quantum mechanics and general relativity still possible
An international team of researchers developed a unified framework that would account for this apparent break down between classical and quantum physics, and they put it to the test using a quantum satellite called Micius.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
More Quantum Mechanics News and Quantum Mechanics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at