Computational study reveals how Ebola nucleocapsid stabilizes

October 20, 2020

WASHINGTON, October 20, 2020 -- The Ebola virus causes a serious infection with a mortality rate between 50% and 90%. Nucleoproteins in the virus assemble into a helical arrangement and encapsulate a single stranded RNA genome, ssRNA, to form a rodlike complex known as a nucleocapsid, which is critical to the function of the virus. Rodlike nucleocapsids are also found in other viruses, like SARS-CoV-2, which causes COVID-19.

In The Journal of Chemical Physics, by AIP Publishing, scientists at the University of Delaware report a computational study of this nucleocapsid and show that the binding of the ssRNA allows the nucleocapsid to maintain its shape and structural integrity.

Simulations of viruses are difficult because the systems are very large. Only a few capsids, including hepatitis B, HPV, HIV-1, and the satellite tobacco mosaic virus, have been investigated at the atomic level. Molecular dynamics simulations of the Ebola nucleocapsid, to date, have been conducted only of its isolated constituents and not at the atomic level.

This work represents the first atomic-level computational investigation of the Ebola nucleocapsid assembly. The model used by the investigators included all atoms in the helical nucleoprotein assembly, the ssRNA, water molecules, and even ions, such as sodium and chloride, that stabilize this highly charged structure.

The resulting model has 4.8 million atoms, namely the nucleocapsid structure with the ssRNA present and without it. The second system was included as a control to investigate the role of the ssRNA.

"We found that ssRNA encapsidation results in stabilization of the Ebola virus nucleocapsid and is essential for maintaining structural integrity of its helical assembly," said author Juan Perilla.

The investigators found that the nucleoprotein interactions and ions contribute to the stability of the nucleocapsid. In the Ebola nucleocapsid, nucleoproteins connect with each other to form a helical assembly. Sodium and chloride ions were found to cluster near the nucleocapsid in the simulation to counter its charge repulsions.

The rodlike nucleocapsid structure is essential for the Ebola virus's ability to infect and evade cellular defense mechanisms as well as its ability to replicate within host cells. The nucleocapsid acts as a scaffold for virus assembly and as a template for transcription of the virus's genes and replication. Its critical roles during infection make it an ideal candidate for antiviral intervention.

Molecular-level knowledge of virus dynamics is needed to understand structure and function and pinpoint vulnerabilities, but it is usually inaccessible from experiment. These insights are readily available from computer simulations, however.

This study should help scientists develop drug treatments that target viral nucleocapsids. The investigators anticipate the methodological approach they have developed for Ebola can be used to study other helical structures, such as the nucleocapsid of SARS-CoV-2.
The article, "Molecular determinants of Ebola nucleocapsid stability from molecular dynamics simulations," is authored by Chaoyi Xu, Nidhi Katyal, Tanya Nesterova, and Juan R. Perilla. The article will appear in The Journal of Chemical Physics on Oct. 20, 2020 (DOI: 10.1063/5.0021491). After that date, it can be accessed at

American Institute of Physics

Related Ebola Articles from Brightsurf:

Targeting the shell of the Ebola virus
As the world grapples with COVID-19, the Ebola virus is again raging.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

Ebola transmission risks would be taken more seriously with ground-up interventions
A study led by the University of Kent's Durrell Institute of Conservation and Ecology (DICE) has found significant differences in disease risk perception and channels of information about Ebola virus disease (EVD) in rural areas and urban centres of Guinea, West Africa.

US inroads to better Ebola vaccine
As the world focuses on finding a COVID-19 vaccine, research continues on other potentially catastrophic pandemic diseases, including Ebola and Marburg viruses.

Ebola antibodies at work
Scientists in Israel and Germany show, on the molecular level, how an experimental vaccine offers long-term protection against the disease.

Half of Ebola outbreaks undetected
An estimated half of Ebola virus disease outbreaks have gone undetected since it was discovered in 1976, according to research published in PLOS Neglected Tropical Diseases.

Protecting those on the frontline from Ebola
Online training developed at the Medical University of South Carolina (MUSC) increased the knowledge of health care workers about effective prevention of Ebola up to 19 percent and reduced critical errors to 2.3 percent in a small MUSC cohort.

Another piece of Ebola virus puzzle identified
A team of researchers have discovered the interaction between an Ebola virus protein and a protein in human cells that may be an important key to unlocking the pathway of replication of the killer disease in human hosts.

How the human immune system protects against Ebola
'The current approach for treatment of filovirus infections with antibody cocktails tested in animal models utilizes the principle of targeting of non-overlapping epitopes.

How to slow down Ebola
The phylogenetic tree of the 2013-2016 Ebola epidemic doesn't just tell us how the Ebola virus was able to evolve: it also reveals which events and preventive measures accelerated or slowed down its spread.

Read More: Ebola News and Ebola Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to