How some sea slugs keep their ability to carry out plant-like photosynthesis

October 20, 2020

Scientists have shed new light on a relationship between a sea slug and tiny structures called chloroplasts from their food algae that allow the animals to photosynthesise in a similar way to plants.

The findings, originally posted on bioRxiv* and published today in eLife, add to our understanding of this animal-chloroplast relationship and photosynthetic animals more widely.

The sea slug Elysia timida (E. timida) is typically found living in shallow Mediterranean waters. Similarly to plants, these organisms are able to photosynthesise, meaning they can use sunlight to produce sugar from carbon dioxide and water. The process is enabled by chloroplasts from the alga Acetabularia acetabulum that the sea slugs feed on.

"These stolen chloroplasts are located in the slugs' digestive tract cells and remain functional for a long time, but little is known about this peculiar animal-chloroplast relationship," explains lead author Vesa Havurinne, Doctoral Student in Molecular Plant Biology at the University of Turku, Finland. "One question concerns the dual nature of light. Light is necessary to drive photosynthesis, but at the same time causes continuous damage to the chloroplasts. How do the slugs protect the chloroplasts from this damage?"

To answer this question, Havurinne and senior author Esa Tyystjärvi, Teacher in Molecular Plant Biology at the University of Turku, used methods such as chlorophyll fluorescence to compare the process of photosynthesis in a large continuous culture of E. timida sea slugs and their prey alga Acetabularia acetabulum grown in the lab. Their results showed that living inside the slugs changes the interior of the chloroplasts in a way that reduces damage to them caused by light.

The team identified three protection mechanisms. First, when exposed to light, slug chloroplasts switch on a mechanism that efficiently converts light energy to heat. Next, the chloroplasts maintain a photosynthetic electron transfer chain in a neutral, oxidised state. This chain then allows the chloroplasts to perform photosynthesis within the slugs, while relying on safe energy 'sinks' such as flavodiiron proteins to accept excess electrons.

"Our results suggest that these photoprotective mechanisms contribute to the long-term functionality of chloroplasts inside the sea slugs, shedding light on this fascinating biological phenomenon," Tyystjärvi says. "This work may also help us better understand occurrences of similar relationships between organisms from earlier in evolution."

He adds that chloroplasts stolen from food algae may impact the longevity of sea slugs. The team's next steps will involve looking at how the intrinsic properties of the chloroplasts affect their lifespan inside E. timida and other slug species.
-end-
Reference

The paper 'Photosynthetic sea slugs induce protective changes to the light reactions of the chloroplasts they steal from algae' can be freely accessed online at https://doi.org/10.7554/eLife.57389. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

*This study was originally posted on the preprint server bioRxiv, at https://www.biorxiv.org/content/10.1101/2020.04.09.034124v1.full.pdf.

Author contact for more information:

Esa Tyystjärvi, Teacher in Molecular Plant Biology
University of Turku
esatyy@utu.fi

Media contact

Emily Packer, Media Relations Manager
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Cell Biology and Plant Biology, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Cell Biology research published in eLife, visit https://elifesciences.org/subjects/cell-biology.

And for the latest in Plant Biology, see https://elifesciences.org/subjects/plant-biology.

eLife

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.