NCAR Research Turns Commercial Aircraft Into Turbulence Sensors

October 20, 1997

BOULDER--Since mid-September, researchers at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, have been turning commercial aircraft into in-flight "sensing platforms" to measure and report turbulence. With funding from the Federal Aviation Administration (FAA), NCAR scientist Larry Cornman and his colleagues have created software that works with an aircraft's existing equipment to measure and report in-situ (in-flight) turbulence once every minute. United Airlines expects to deploy the software on more than 200 aircraft over the next six months. The data will be used to create turbulence forecasts to help pilots steer clear of bumpy air. NCAR's primary sponsor is the National Science Foundation.

Until now, the only data on turbulence--the sudden, invisible gusts that buffet a plane and its passengers--came from pilot reports of bouncy or choppy air. "If we'd tried to come up with a new sensor to load onto the aircraft, it would have been too costly," explains Cornman. Part of that cost comes from testing new equipment to ensure that it does not affect flight operations. "So we looked for a way to use sensors, computers, and communications systems that were already on board, without interfering with their normal functions." Instead of measuring turbulence directly, the researchers use the aircraft's response to turbulence to deduce its magnitude.

"We're solving an inverse problem," says Cornman. "If I measure what the aircraft's doing, I can infer what the turbulence must have been." The result is an in-situ turbulence algorithm, or mathematical problem-solving procedure, that uses measurements of how much the aircraft is bouncing up and down while accounting for its weight, air speed, altitude, and whether the plane is on autopilot or not.

The algorithm is incorporated into software installed by Allied Signal, Inc., within Allied's onboard flight management system and aircraft condition monitoring system. The data are then transmitted to an FAA/National Weather Service (NWS) data base.

On average, a significant turbulence incident happens every other day on a commercial flight somewhere in the United States. The result can be everything from spilled food trays to broken bones for flight attendants and passengers not buckled into their seats. In 1991, severe turbulence tore the engine off a 747 cargo plane departing the Anchorage airport. While a cause for the crash of United Flight 535 on final approach to Colorado Springs airport in 1991 has never been determined, turbulent winds and a rudder problem are thought to be the most likely explanations.

Cornman and other scientists will use the data compiled on the FAA/NWS data base to create a turbulence detection product--a view of flight tracks showing what all of the aircraft in a given region have measured in a 30-minute period. That flight track information will be provided to United Airlines (and to other airlines as they become participants in the future), as well as to the NWS Aviation Weather Center in Kansas City, Missouri.

As more aircraft report more data, Cornman expects forecasting products to improve to the point that "nowcasting," or turbulence warnings in real time, will be possible. "Having such a comprehensive and accurate data base will really boost our development of new forecasting tools," Cornman explains.

The International Civil Aviation Organization (ICAO) will compare results from the U.S. in-situ turbulence detection program to ongoing research at the Australian Bureau of Meteorology. ICAO's goal is an international standard for turbulence measuring and reporting.

NCAR is managed by the University Corporation for Atmospheric Research.
-end-


National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Turbulence Articles from Brightsurf:

Turbulence affects aerosols and cloud formation
Turbulent air in the atmosphere affects how cloud droplets form.

Atmospheric turbulence affects new particle formation: Common finding on three continents
New particle formation (NPF) over three countries is investigated using aerosol physicochemical quantities and turbulence information.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

Return of the Blob: Surprise link found to edge turbulence in fusion plasma
Correlation discovered between magnetic turbulence in fusion plasmas and troublesome blobs at the plasma edge.

Researchers unveil the universal properties of active turbulence
Turbulent flows are chaotic yet feature universal statistical properties.Over the recent years, seemingly turbulent flows have been discovered in active fluids such as bacterial suspensions, epithelial cell monolayers, and mixtures of biopolymers and molecular motors.

Unraveling turbulence
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) may have identified a fundamental mechanism by which turbulence develops by smashing vortex rings head-on into each other, recording the results with ultra-high-resolution cameras, and reconstructing the collision dynamics using a 3D visualization program.

Researchers develop first mathematical proof for key law of turbulence in fluid mechanics
Turbulence is one of the least understood phenomena of the physical world.

A new parallel strategy for tackling turbulence on Summit
A Georgia Tech team developed an algorithm for simulating turbulence on Summit, the world's most powerful and smartest supercomputer.

Turbulence creates ice in clouds
Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature.

Turbulence meets a shock
Interaction of shocks and turbulence investigated with a focus on high intensity turbulence levels.

Read More: Turbulence News and Turbulence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.